
NTT Technical Review 59Vol. 18 No. 12 Dec. 2020

1.   Introduction

At NTT Media Intelligence Laboratories, we have 
researched and developed knowledge and language-
processing technology for contact centers for analyz-
ing documents (such as work manuals and frequently 
asked questions) and presenting appropriate docu-
ments to agents handling customers. Not only in 
contact centers but also in offices, it is necessary to 
further improve productivity of agents and employ-
ees. In response to this necessity, we are developing 
technology for understanding and generating large-
scale documents and various responses. We first 
explain a language model for handling documents 
and document-summarization technology using this 
language model then describe interview-support 
technology for analyzing responses between a cus-
tomer and agent. 

2.   Development of natural-language 
understanding by using a language 

model (BERT)

It has been considered difficult for artificial intelli-
gence (AI) to understand human language. However, 

with the advent of Bidirectional Encoder Representa-
tions from Transformers (BERT) [1], announced by 
Google in October 2018, the research and develop-
ment (R&D) of natural-language understanding has 
undergone a large paradigm shift. For example, 
regarding the task called machine reading [2], which 
requires reading comprehension to understand the 
content of text and answer questions, it has been 
reported that AI using BERT greatly exceeded the 
response score of a human. Performance of natural-
language-processing tasks other than machine read-
ing has also improved significantly, and language 
models are attracting attention as a basic technology 
for giving AI the ability of language comprehension. 

A language model estimates the plausibility of sen-
tences (Fig. 1). For example, many people may feel 
that “cake” is more natural than “egg” as the word 
“X” in the sentence “Today is my birthday, so I ate 
[X].” Also, it seems natural that the two sentences 
“It’s a fine day today.” and “It’s a good day to do the 
laundry.” appear consecutively. BERT learns in 
advance such fill-in-the-blank problems (word pre-
diction) and relationships between two consecutive 
sentences (prediction of the next sentence) on the 
basis of a large set of texts such as all Wikipedia  
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sentences. By learning (fine-tuning) with various 
task-dependent datasets, the language model (BERT) 
obtained in this manner can be applied to various 
tasks (such as classifying texts by genre and extract-
ing phrases that will answer questions) and achieve 
high performance even when a large amount of learn-
ing data is not available for the applied task.

BERT has had a great impact on natural-language 
processing, and language models are still being 
researched and constructed all over the world. At 
NTT Media Intelligence Laboratories, while collect-
ing a large amount of Japanese text data and creating 
a Japanese-language BERT, we are researching tech-
nologies that use language models for tasks such as 
summarizing documents [3, 4], retrieving documents 
[5], and answering questions [6, 7]. In each case, high 
performance is achieved by not only simply applying 
BERT but also using the knowledge we have gained 
through our previous research on natural-language 
processing and deep learning. Moreover, by investi-
gating the characteristics and internal operation of 
BERT [8], we are researching with the aim of con-
structing our own language model that remedies the 
shortcomings of BERT. 

3.   Document-summarization technology for 
summarizing documents by specifying length

Document-summarization technology is intro-
duced as a representative example of a technology 

that uses the language model described above. Docu-
ment summarization has been grappled with for many 
years. For customer-contact work such as at contact 
centers, if AI returns a long sentence as a result of 
searching previous calls and answering a customer’s 
question, it will be difficult for the customer to read 
such a long sentence; accordingly, it is desirable to 
appropriately adjust the length of the sentence. 

Given the above-mentioned issue, NTT Media 
Intelligence Laboratories developed a document-
summarization technology that can control sentence 
length by using a neural network [3]. This technology 
consists of a combination of an extractive model 
(which identifies important points in a sentence) and 
abstractive model (which generates a summary sen-
tence from the original sentence). The extractive 
model learns on the basis of the language model. By 
controlling the number of important words output by 
the extractive model according to the specified sen-
tence length and by generating a summary sentence 
based on both the important words and the original 
sentence, it was possible to establish a technology 
that can control sentence length and summarize with 
high accuracy. 

This document-summarization technology is used 
as the core engine of the COTOHATM API summari-
zation function developed by NTT Communications 
[9]. COTOHA Summarize offers a service for output-
ting a summary text when a document is input and 
provides our customers a free tool for generating 

Fig. 1.   Language model BERT.
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summary texts of sites browsed with a web browser. 
We plan to further develop this technology for the 
NTT Group.

We will continue to advance R&D to improve this 
summarization technology, which includes not only 
document summarization but also summarization 
that targets dialogue and summarization that allows 
the viewpoint and keywords of the summarization to 
be specified externally. To further strengthen the 
competitiveness of our language model, we plan to 
continue technological development while incorpo-
rating the results of our latest research on language 
processing. Such work will include scaling up the 
model, constructing a generative language model for 
generating more-natural sentences, and establishing 
summarization technology based on that model [4].

4.   Technology for using knowledge obtained 
from contact-center calls

4.1   Challenges in supporting customer contacts
NTT Media Intelligence Laboratories developed an 

automatic knowledge assistance system [10]. This is 
a technology that automatically retrieves and presents 
documents according to the content of a conversation 
with a customer. By supporting the agent with knowl-
edge and responding promptly to customers with 
appropriate information, it became possible to 
improve relationships with customers. 

However, contact centers are required to play a new 
role as the business style changes due to the digital 
transformation (DX) of offices and the spread of the 
novel coronavirus. One of these roles is as a sales 
method called inside sales. Inside sales is explained 
as follows. In contrast to the conventional sales 
method, namely, a full-time salesperson conducts 
face-to-face sales to understand customer needs and 
conclude business negotiations, inside sales is based 
on (i) maintaining continuous communication with 
the other party while gathering information (such as 
understanding needs) that triggers business negotia-
tions via telephone or web conference and (ii) dis-
patching a salesperson when the possibility of receiv-
ing an order or contract increases. The number of 
contact centers that handle customers by using inside 
sales is increasing. The challenges facing contact 
centers playing this role are as follows. 

•	 	Further	 improvement	 of	 agent	 or	 productivity:	
When creating a report after finishing a call, it is 
necessary to support the extraction of important 
information in the response from business nego-
tiations in which the flow of conversation is 

complicated and the topics are diverse.
•	 	Improvement	 of	 productivity	 of	 sales-informa-

tion	analysis:	From	the	standpoint	of	the	agents’	
supervisor, it is necessary to understand and 
analyze the likelihood of making contracts, the 
tendency of customer needs, and other conversa-
tional tendencies included in business negotia-
tions between each agent and customers. Plan-
ning and agent operations are then improved on 
the basis of the analyzed information. It is thus 
necessary to support such analysis and improve-
ment work.

4.2   Interview-support technology
To address the above-mentioned challenges, we 

developed interview-support technology. This tech-
nology consists of two elements (Fig. 2). The first 
specifies a series of responses to the customer for 
each section of the topic. The second extracts impor-
tant utterances such as questions, answers, and expla-
nations from the sections specified by the former. 

A characteristic of a business conversation that 
draws out issues and requests concerning a customer 
is that the topic continuously changes according to 
the answers given by the customer. Since conven-
tional technology cannot cope with such a dynamic 
situation, we developed a means of firmly determin-
ing the point at which the topic changes. This is the 
first feature of the interview-support technology. Sec-
tions of the same topic are specified by machine 
learning using characteristic expressions at the point 
of change of the topic appearing in a conversation, 
and the type of topic is acquired by machine learning 
using characteristic expressions in the topic. The sec-
ond feature of this technology is that the utterances of 
questions and answers of agents and customers for 
each topic are extracted by machine learning using 
characteristic expressions included in important 
utterances such as questions and answers. 

By using the text of a call that is divided into sec-
tions for each topic by using the interview-support 
technology, after the call, the agent can quickly iden-
tify the points at which he/she heard about the cus-
tomer’s needs and budget and create a report based on 
that information. Moreover, by collecting such infor-
mation from many calls, it becomes possible to sup-
port the analysis of sales information. We aim to 
apply this technology to responses via voice but also 
via online chat (text messages), which has been 
increasing in popularity. 
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5.   Concluding remarks

We introduced our language model, document-
summarization technology, and interview-support 
technology. Going forward, we plan to work on two 
technologies for understanding and generating large-
scale	documents	and	various	responses:	(i)	a	technol-
ogy that can read various document layouts and 
search for necessary information at high speed and 
high accuracy and (ii) a technology that supports stra-
tegic conversations by grasping the details of a con-
versation and extracting needs that customers may 
have difficulty noticing themselves.
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Fig. 2.   Interview-support technology.
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