
NTT Technical Review 40Vol. 19 No. 7 July 2021

1.   Estimating the state of mind and body 
through biological sounds

The biological information obtained from measur-
ing the living body reflects the function, morphology, 
and dynamic characteristics of the living body. We 
are researching and developing the concept of bio-
digital twins to improve people’s well-being by, for 
example, early detection of diseases. With a bio-dig-
ital twin, various types of biological information as 
signals are captured, and signal-processing and 
machine-learning technologies are used to model the 
physical and mental states of each person on the basis 
of the observed signals. Initiatives that focus on the 
sounds generated by living organisms are first intro-
duced.

1.1   Telestethoscope
Doctors and nurses use auscultation to determine 

the presence or absence of abnormalities and the 
degree of urgency. Skilled medical practitioners can 
visualize in their minds the generation and transmis-
sion of biological sounds such as breathing, move-
ment of heart valves, and blood flow. Inspired by such 
auscultation by medical professionals, we are con-
ducting research and development on a wearable 
device called the telestethoscope (see Fig. 1(a)). 

The telestethoscope is used for acquiring biological 
sounds (acoustic signals) from multi-channel micro-
phones and electrocardiograms (ECGs). The acquired 
acoustic signals and ECG can be sent to a remote 
terminal via a network. Sounds from various points 
on the wearer’s body can be heard by touching the 
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screen of that terminal. An overview of the telestetho-
scope is shown in Fig. 1.

The telestethoscope will allow medical personnel 
to listen to acoustic signals of patients remotely with-
out having to come into contact with patients; there-
fore, it will be useful for examining patients with 
infectious diseases and assessing the urgency of 
patient care from a distance (e.g., when the patient is 
at home or in a rural area) (Fig. 1(b)). Since it is pos-
sible to record and share biological sounds, it is also 
possible to repeatedly auscultate offline or chrono-
logically study the status by comparing current and 
past sounds. In addition to the above use by medical 
professionals, we are also researching its use by the 
general public for self-healthcare, as described 
below.

1.2    Adding descriptive text to heart sounds by 
using the telestethoscope

It is not easy for non-specialists to understand the 
information about living organisms by simply listen-
ing to biological sounds. However, signal processing 
and machine-learning technology makes it possible 
to convert biological sounds into a form that is easy 
for many people to understand. Therefore, we are 
investigating converting (translating) biological 
sounds directly into simple wording (Fig. 1(c)).

The most-straightforward means of explaining bio-
logical sounds would be to classify them as “normal” 

or “abnormal.” However, if a person’s sounds are 
classified as “abnormal,” a more-detailed explanation 
may be needed. For example, it would be useful to 
know what abnormalities are present and whether the 
person in question should go to the hospital immedi-
ately. To address this issue, we previously proposed a 
method called conditional sequence-to-sequence 
caption generation, which allows the user to specify 
a numerical value called specificity that represents the 
level of detail of the description to be generated [1]. 
For example, if the heart sounds and a large number 
as a desired level of detail are input into the system, a 
detailed explanation can be output.

1.3    Estimating health status via video images 
from heart sounds acquired from the 
telestethoscope

Another means of converting biological sounds into 
an easy-to-understand form is to generate moving 
images that represent biological functions in real time 
(Fig. 1(d)). We have attempted to reconstruct the 
movement of the heart from the sound of the heart. A 
normal heart moves in a cyclic fashion in which the 
transitions occur in the following order: atrial systole, 
isovolumic systole, ejection phase, isovolumic dias-
tole, and filling phase. We therefore aim to estimate 
the transitional state of the heart from measuring 
heart sounds then estimate and reconstruct the move-
ment of the heart in three dimensions (3D). Since the 

Fig. 1.    System overview of telestethoscope. (a) Telestethoscope wearable device, (b) remote auscultation, (c) automatic 
sound-description generation, and (d) visualizing estimated 3D cardiac motion in accordance with the estimated 
heart states.
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heart pumps blood around the body, a specific physi-
cal relationship between its pressure and volume is 
maintained through the state transitions. Focusing on 
this physical relationship, we devised a method of 
constructing a 3D moving image. This method uses 
the physical relationship to improve the accuracy of 
cardiac motion estimation by restraining it in accor-
dance with the state transition, which is estimated 
from the heart sounds [2].

Accurately estimating and predicting the physical 
and psychological state of an individual from easily 
observable biometric information, such as sound, will 
necessitate many other innovations. We will continue 
to research and develop signal-processing and 
machine-learning technologies for measuring bio-
logical functions and dynamics from multiple per-
spectives, such as sound information and electrocar-
diographic information, as described below.

2.   Wearable 3D ECG device using new lead  
system and ECG analysis method called tensor 

ECG guided by the new system

To determine the physiological function of the 
heart, ECGs are widely used in, for example, diagno-
sis at medical institutions, vital-sign monitoring, 
medical examinations, and automated external defi-
brillators. With advances in information and commu-
nications technology, such as the Internet and smart-
phones, as well as in information-processing tech-
nologies, such as machine learning, ECGs are being 
applied in new fields such as artificial-intelligence-
guided healthcare. Due to the increase in cardiac 
diseases in the super-aging society, a society whose 
population aged 65 or older is over 21%, the need for 
home care and telemedicine using electrocardiogra-
phy is rapidly increasing. Taking advantage of our 
experience in developing a wearable ECG device 
using hitoeTM, we are developing a wearable device 
for continuous measurement of ECGs and an ECG 
analysis method by combining medical knowledge 
on clinical ECGs with recent information-processing 
technology [3].

2.1    3D ECG induction suitable for long-term 
recording in wearable device

ECGs are analyzed on the basis of their potential 
difference (scalar quantity) and shape (pattern), 
which are obtained from multiple bioelectrodes 
placed at specified points (standard 12 leads) on the 
surfaces of the extremities and chest. As a method of 
recording electrocardiographic potential more three-

dimensionally, a vector ECG (which uses a three-axis 
Cartesian-coordinate system) involves using elec-
trodes on the chest, head, and lower extremities and a 
resistance-correction circuit. Since both standard-
12-lead and vector ECGs involve using electrodes on 
the extremities, they are easily affected by body 
movements, so they are basically recorded while the 
patient is in a resting state. However, electrodes 
attached to the chest are less affected by body motion 
and can produce relatively large cardiac potentials, so 
they are used for Holter ECG monitors (portable 
devices for cardiac monitoring), exercise-load, and 
sports ECGs. 

For long-term stable recording of a 3D ECG, we 
devised a wearable devise for measuring ECG with 
its reference point set in the apex region of the heart 
(i.e., on the left anterior wall, where the heart is clos-
est to the thorax) and with counter poles in three lin-
early independent directions (Fig. 2(a)) [4]. By bipo-
lar induction*1 generated by placing two horizontal 
leads on opposite sides of the thorax and vertical 
leads on the upper right precordium in line with the 
electromotive-force base axis*2, 3D electrocardio-
graphic potential can be stably recorded (Fig. 2(b)). 
The electrodes and wires are integrated into an elastic 
belt that can be easily attached by simply tightening 
the shoulder and waist parts of the belt. We have also 
developed a non-invasive cardiac polygraph with 
hemodynamics for simultaneously measuring cardiac 
output and deep vascular pulse waves (Fig. 2(c)).

2.2    New method for analyzing ECGs: tensor 
ECG 

Abnormalities in ECGs are shown as not only a 
standardized abnormal waveform (pattern) but also as 
a slight distortion of the shape or change in potential. 
A method of quantitatively evaluating such atypical 
ECG abnormalities has not been developed. We are 
currently designing individual criteria for specific 
diseases and special patterns to identify them. 
Regarding the collective action potential of the myo-
cardium, the electromotive force of the cardiac potential 
has three plateau phases with continuous depolarization, 

*1 Bipolar induction: An ECG records the flow of electricity in the 
heart, and induction is the process of creating a flow of electricity 
from a negative electrode to a positive electrode by attaching 
electrodes across the heart. Bipolar induction is a method of ac-
quiring an ECG by using two electrodes.

*2 Base axis of electromotive force: Since the heart is a 3D struc-
ture, its electrical charge continuously changes three-dimension-
ally. An ECG can be regarded as a recording of the electromotive 
force generated throughout the heart, and the direction of the 
electromotive-force vector is called the base axis.
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whereas the cardiac potential at the body surface does 
not usually show such a plateau. We use the molecu-
lar-biology and physiological constraints of the mem-
brane potential of each period (from phases 0 to 4) of 
the action potential to estimate the collective action 
potential of the myocardium from the electrocardio-
graphic potential on the body surface (i.e., an inverse 
problem) (Fig. 2(d)). From the conversion of electro-
cardiographic potential to action potential, atypical 
distortions are magnified and made clearly visible 
(Fig. 2(e)). We are examining whether the parameters 
(tensor[s]) obtained during the conversion to action 
potential of the myocardium can be used as indicators 
for quantifying and uniformly evaluating complex 
abnormal patterns and minute distortions in ECGs. 
We anticipate that tensor ECG for multi-mode data 
measurement and analysis will be useful in diagnos-
ing arrhythmias associated with heart failure, isch-
emic heart disease, and sudden cardiac death.

3.   Application to rehabilitation using 
wearable devices

Wearable devices are useful not only for early 
detection and accurate diagnosis of diseases but also 
after the onset of disease. One example of a wearable 
device is one for improving rehabilitation quality we 
have been developing and medically validating with 
Fujita Health University and Toray Industries, Inc. 
since 2017 [5]. Taking stroke rehabilitation as an 
example, the more opportunities for rehabilitation 
(exercise training) after the occurrence of a stroke, 
the better the outcome can be expected [6]. However, 
rehabilitation with therapists is limited, so stroke 
patients are encouraged to be as active as possible in 
their daily lives by getting out of bed or doing reha-
bilitation exercises on their own. However, it is diffi-
cult for a patient with a one-side-paralyzed (hemipa-
retic) body to exert vigorous effort on their own, so 
they need support to achieve a better recovery. 

Fig. 2.   Overview of tensor ECG: a new induction and analysis method.

(a) Placement of electrodes for linearly independent triaxial bipolar induction with respect to the apex (anterior wall of the left ventricle). 
 The positions of the heart, lungs, and major vessels of the longitudinal axis are shown. 
(b) Belt-type Holter ECG for 3D induction method.* Multiple electrodes are placed on the inside of the right shoulder and waist belts. 
(c) A measurement device for simultaneously measuring 3-channel ECG and impedance blood flow via Bluetooth wireless communication.* 
(d) Cardiac ECG, which is the source of the ECG recorded on the body surface (black), is the action potential of the myocardium (blue), 
 characterized by a trapezoidal plateau phase. The action potential of the myocardium is estimated from the ECG by signal processing. 
(e) The ECG of heart failure (red) may slightly differ from normal (black). Conversion from ECG to myocardial action potential reveals

this distortion.          * Unapproved medical equipment
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Against this background, we developed a wearable-
device that enables precise monitoring of activities of 
a stroke patient on a 24-hour basis (Fig. 3). For 
example, a hemiparetic patient wears our device, 
which he/she can put on and take off by him/herself, 
and data are automatically collected on a server 
through a relay such as a smartphone or gateway. The 
device includes an algorithm for processing data for 
(i) advanced downsampling that avoids overloading 
the network of hospital facilities while preserving the 
characteristics of the patient’s activity and (ii) impu-
tation processing assuming partial data loss. Medical 
validation of the index obtained by these processes is 
also underway. 

This device is used on the basis of three types of 
outputs. The first is a report for the patient and their 
family. The recovery process can be clearly conveyed 
through numerical records of the gradual increase in 
the time spent in active movement. The illustrations 
change as the patient progresses, so the patient and 
his/her therapist can discuss the progress made after 
each session, which will lead the patient to the next 
exercise. The second output is the detailed measure-
ment results used in medical-team meetings. Medi-
cal-care providers working with a large number of 
patients cannot keep track of specific individuals. 
However, on viewing the 24-hour record output from 
the device, the entire team can share changes in a 
certain patient’s daily activities. The third output is 
listed information based on measurement data. 

Regarding medical research, facts are revealed by 
verifying statistical certainty derived from a large 

number of measurement results. However, the 
amount of activity data over a 24-hour period is large; 
therefore, we designed a system for automated pre-
processing so that it can be easily used in medical 
research. The system also supports the 6-minute walk 
test, which is widely used in rehabilitation studies. 
This allows the results of 24-hour activity monitoring 
to be easily compared with previous studies. We 
expect this will lead to new insights in rehabilitation 
research. The system has been commercialized and is 
being used for medical research. We believe that it 
will further contribute to better patient recovery 
through combining it with advanced technologies 
such as machine learning.
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