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1.   Introduction

Humans can listen to the person they want to (i.e., 
a target speaker) in a noisy environment such as a 
cocktail party by focusing on clues about that speaker 
such as her/his voice characteristics and the content 
of the speech. We call this ability selective hearing. It 
has been the goal of speech-processing researchers to 
reproduce a human’s selective hearing ability. When 
several people speak together, the speech signals of 
the speakers tend to overlap, creating a speech mix-
ture. It is difficult to distinguish the speech of the 
target speaker from that of the other speakers in such 
a mixture since all speech signals share similar char-
acteristics. One conventional approach to address this 
issue is to use blind source separation (BSS), which 
separates a speech mixture into the source speech 
signals of each speaker. Research on BSS has made 

tremendous progress. However, BSS algorithms usu-
ally (1) require knowing or estimating the number of 
speakers speaking in the speech mixture and (2) 
introduce an arbitrary permutation between the sepa-
rated outputs and speakers, i.e., we do not know 
which output of BSS corresponds to the target speak-
er. These limitations of BSS can impede the deploy-
ment of BSS technologies in certain practical appli-
cations.

Target-speech extraction is an alternative to BSS 
that has attracted attention. Instead of separating all 
speech signals, target-speech extraction focuses on 
extracting only the speech signal of the target speaker 
from the mixture. It uses clues about the target speak-
er to identify and extract that speaker in the mixture 
[1, 2, 3]. Several speaker clues have been proposed 
such as an embedding vector that is derived from a 
pre-recorded enrollment utterance and represents the 
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voice characteristics of the target speaker (audio clue) 
or video data showing the lip movements of the target 
speaker (video clue). Using such speaker clues, these 
speech extraction methods focus on only extracting 
the target speaker without requiring the number of 
speakers in the mixtures. The output of the methods 
corresponds to the target speaker, avoiding any per-
mutation ambiguity. Therefore, target-speech extrac-
tion naturally avoids the limitations of BSS.

In this article, we briefly review the audio-clue-
based target-speech extraction method, Speaker-
Beam. We experimentally show one of its limitations, 
i.e., performance degrades when extracting speech in 
mixtures of speakers with similar voice characteris-
tics. We then introduce the multimodal (MM) exten-
sion of SpeakerBeam, which is less sensitive to the 
above problem. Finally, we discuss how the princi-
ples of target-speech extraction can be applied to 
other speech-processing problems and expand on 
future work directions to achieve human’s selective 
hearing ability.

 
2.   SpeakerBeam: Neural-network-based 
target-speech extraction with audio clues

Figure 1 is a schematic of SpeakerBeam, which is 
a neural network (NN)-based target-speech extrac-
tion method that exploits audio clues of the target 
speaker. SpeakerBeam consists of two NNs. The 
speaker-characteristic-computation NN accepts an 

enrollment recording of the voice of the target speak-
er of about 10 seconds and computes a speaker-
embedding vector representing her/his voice charac-
teristics. The target-speech-extraction NN accepts the 
mixture signal and speaker-embedding vector and 
outputs the speech signal of the target speaker with-
out the voice of the other speakers. The speaker-
embedding vector informs the target-speech-extrac-
tion NN which of the speakers from the mixture to 
extract. These two networks are trained jointly to 
obtain speaker-embedding vectors optimal for target-
speech extraction. SpeakerBeam was the first method 
for target-speech extraction based on audio clues 
representing the voice characteristics of the target 
speaker.

We conducted experiments to evaluate Speaker-
Beam’s performance using two-speaker mixtures 
generated from a corpus of English read speech utter-
ances. Figure 2(a) shows the extraction performance 
of SpeakerBeam measured with the signal-to-distor-
tion ratio (SDR). The higher the SDR the better the 
extraction is. SpeakerBeam achieved high extraction 
performance on average with an SDR of more than 8 
dB. However, by breaking down this number in terms 
of performance for mixtures of speakers of the same 
or different sexes, we observed a severe degradation 
in performance by more than 2 dB when extracting 
speech from same-sex mixtures. This reveals the dif-
ficulty of SpeakerBeam to identify and extract the 
target speech when the speakers in the mixture have 

Fig. 1.   Principle of SpeakerBeam.
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relatively similar voice characteristics, which occurs 
more often with same-sex mixtures. One approach to 
address this issue is to rely on other clues than audio 
clues to carry out target-speech extraction such as 
video clues that do not depend on voice characteris-
tics.

3.   MM SpeakerBeam

In parallel to audio clues, others have proposed 
using video clues to carry out target-speech extrac-
tion. For example, Ephrat et al. [3] used a video 
recording of the face and lip movements of the target 
speaker to extract speech. Their method uses a pre-
trained NN, such as FaceNet, to extract features or 
face-embedding vectors representing the characteris-
tics of the face of the target speaker. These face-
embedding vectors form a dynamic representation of 
the lip movements of the target speaker speaking in 
the mixture. They are fed to a target-speech-extrac-
tion NN, similar to that of SpeakerBeam, to identify 
and extract the speech signal in the mixture that cor-
responds to those lip movements. The video clues do 
not depend on the voice characteristics of the target 
speaker. Therefore, video-clue-based approaches can 
be used even when the speakers have similar voice 
characteristics. For example, in an extreme case, Eph-

rat et al. [3] showed that video-clue-based approaches 
could even extract speech in a mixture of two speech 
utterances of the same speaker as long as the speech 
content, thus lip movements, were different. Howev-
er, video clues are sensitive to obstructions, i.e., when 
the mouth of the target speaker is hidden from the 
video, which often occurs.

We previously proposed an extension of Speaker-
Beam called MM-SpeakerBeam that can exploit 
multiple clues [4, 5]. For example, by using both 
audio and video clues, we can combine the benefits of 
audio- and video-clue-based target-speech extraction, 
i.e., robustness to obstructions in the video thanks to 
the audio clue and handling of mixtures of speakers 
with similar voices thanks to the video clue. Figure 3 
is a schematic of MM-SpeakerBeam. MM-Speaker-
Beam exploits both video and audio clues and uses a 
face-characteristic-computation NN to extract a time 
sequence of face-embedding vectors from the video 
clue, as in Ephrat et al.’s study [3], and a speaker-
characteristic-computation NN to extract speaker-
embedding vectors, as in audio-clue-based Speaker-
Beam. MM-SpeakerBeam includes a clue-selection 
mechanism to select the speaker clues based on clue 
reliability, which dominantly exploits audio clues 
when the face is obstructed in the video and the video 
clues when the speakers have similar voice 

Fig. 2.   Evaluation of SpeakerBeam performance on two-speakers mixtures.
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characteristics. We implemented the clue-selection 
mechanism using a similar attention mechanism to 
that initially proposed for neural machine translation. 
The target-speech-extraction NN is similar to that of 
SpeakerBeam. Thanks to the clue-selection mecha-
nism, we can combine clues optimally depending on 
the situation, making MM-SpeakerBeam more robust 
than target-speech-extraction methods relying on a 
single modality.

Figure 2(b) shows the speech-extraction perfor-
mance of MM-SpeakerBeam. We can see that the 
overall performance improves and that the largest 
improvement was achieved for same-sex mixtures. 
These results reveal that by exploiting multiple 
modalities (here audio and video), MM-Speaker-
Beam can achieve more stable performance. We refer 
the readers to our demo webpage [6] to listen to vari-
ous examples of processed signals.

 
4.   Extension to other speech-processing tasks

We can apply the principle of SpeakerBeam to 
speech-processing tasks other than target-speech 
extraction. For example, after we proposed Speaker-
Beam, others have used a similar method to achieve 
target-speaker voice-activity detection (TS-VAD) [7], 
which consists of estimating the start and end timing 
of speech of the target speaker in a mixture. TS-VAD 
is an important technology when developing auto-
matic meeting-transcription or minute-generation 
systems as it enables us to determine who speaks 

when in a conversation. The use of target-speaker 
clues is very effective for voice-activity detection 
under challenging conditions [7]. Another extension 
of SpeakerBeam consists of target-speech recogni-
tion, which outputs the transcription of the words 
spoken by the target speaker directly, without any 
explicit speech-extraction step [8].

 
5.   Future perspectives

There are various potential applications for target-
speech extraction such as for hearing aids, hearables 
or voice recorders that can enhance the voice of the 
speaker of interest, and smart devices that respond 
only to a designated speaker. Target-speech extrac-
tion can also be useful for automatic meeting-tran-
scriptions or minute-generation systems. We plan to 
extend the capability of SpeakerBeam to get closer to 
human selective hearing ability, thus open the door 
for novel applications.

One of our recent research interests is to extend the 
extraction capabilities of SpeakerBeam to arbitrary 
sounds. Figure 4 illustrates the concept of our recent-
ly proposed universal sound selector [9]. This system 
uses clues indicating which sound categories are of 
interest, instead of audio or video clues. With this 
system, we can develop hearing devices that can 
extract different important sounds from the environ-
ment (e.g., woman or siren in the figure) while sup-
pressing other disturbing sounds (dog barking, car 
noise, or man speaking) depending on the user or 

Fig. 3.   MM-SpeakerBeam.
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situation. Interested readers can find a demo of this 
system on our webpage [10].

Finally, humans can focus on a conversation 
depending on its content. A well-known example is 
that we can easily pick up when someone is saying 
our name at a cocktail party. Humans can thus exploit 
more abstract clues, as well as audio and video, to 
achieve selective listening such as the topic of a con-
versation or other abstract concepts. To achieve 
human selective hearing, we should extend Speaker-
Beam to speech extraction on the basis of such 
abstract concepts. This introduces two fundamental 
research problems. First, how to represent abstract 
speech concepts. We have made progress in this 
direction [11]. The second problem consists of how to 
extract the desired speech signal on the basis of such 
abstract concept representations. We will tackle these 
problems in our future research.
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