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1.   Introduction

Internet traffic has been grown rapidly due to 
increasingly diversified traffic demands as a result of 
both video-streaming and cloud-computing services. 
To handle the changing requirements of future traffic 
in backbone networks, the concept of the elastic opti-
cal network (EON) was proposed [1]. EONs have a 
finely granular frequency grid (typically a multiple of 
either 6.25 or 12.5 GHz) to allocate the minimum 
frequency bandwidth to each channel, compared with 
the traditional flexed-grid (e.g., 50 GHz). EONs allo-
cate a different number of frequency slots (FSs) to a 
connection request in accordance with the bandwidth 
demand for more efficient spectral utilization. How-
ever, non-uniform FS allocation results in spectral 
fragmentation that degrades spectral utilization. 
Therefore, efficient use of the spectral resources in 
EONs requires a routing and spectrum assignment 
(RSA) algorithm that can prevent spectral fragmenta-
tion. 

Research into optical networking has yielded pro-
posals based on RSA using deep reinforcement learn-
ing (DRL) [2] in EONs. The pioneering studies are on 
DeepRMSA [3] and its improved version [4], which 
determine the routing path among K shortest paths 
(KSPs), outperforming traditional RSA based on 

shortest path and KSP algorithms. These pioneering 
studies indicated that DRL-based RSA is promising. 
In this article, we introduce the basic concept of RSA 
in EONs followed by DRL-based RSA algorithms for 
efficient network planning in EONs. We then explain 
our proposed DRL-based RSA algorithm called 
Mask RSA along with its performance evaluation.

2.   EONs

EONs have emerged as one of the most promising 
network technologies for next-generation optical net-
works. In simulation, an EON consists of nodes and 
links, and each link has FSs. FSs are represented as 
indexed list of FS status, e.g., available and occupied 
FSs are represented as 1 and 0, respectively, then FSs 
indicate a list [0,0,0,1,1,1,0,1,1]. Each connection 
request has a duration, and when the duration elapses, 
the FSs that were used are released. 

Figure 1 illustrates an example of a simulated EON 
that consists of four nodes, A, B, C, and D, and four 
links, A-B, B-C, C-D, and D-A. Each link has eight 
FSs. Let us take the case of an incoming connection 
request from node A to node C with two FSs. To 
check which FSs are available to assign in the route 
A-B-C, FSs of links in the route are calculated by the 
bitwise AND operation; the FSs of A-B are 
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[0,1,1,1,0,0,1,1] and B-C are [1,1,1,0,0,1,1,1], and 
the resulting FS status is [0,1,1,0,0,0,1,1]. In the 
route, assignable candidates are the 2nd and 3rd and 7th 
and 8th FSs. Like this example, a spectrum continuity 
constraint (i.e., same FSs should be used across links) 
exists, which ensures that all links in the end-to-end 
route use the same FSs. Spectrum assignment (SA) 
algorithms determine which candidates are used, as 
explained in the following section. 

3.   RSA

To give an overview of RSA, let us take an example 
of a well-known heuristic algorithm, the KSP and 

first fit (KSP-FF) algorithm. The KSP-FF algorithm 
solves the routing subproblem (by KSP) and SA sub-
problem (by FF) separately. It first determines a route 
then the FSs to be used. Figure 2 shows an overview 
of determining which route and FSs. 

In routing, the KSP-FF algorithm first precomputes 
a routing table that is an ordered list of the K routes 
between all pair of nodes. Next, when a connection 
request arrives, KSPs are obtained from the routing 
table by using the pair of source and destination 
nodes. Finally, a path where assignable FSs exist is 
searched for in order of shorter paths. When available 
FSs do not exist in K routes, the connection request is 
rejected, which is called blocking. After routing, 

Fig. 1.   Spectrum assignment example in an EON.
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Fig. 2.   Overview of KSP-FF algorithm.
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spectrum assignment by FF is executed; in all assign-
able FSs, the lowest indexed FSs are selected. This 
assignment procedure packs existing connections 
into the smallest number of FSs, leaving a larger 
number of available FSs. 

An efficient RSA algorithm can prevent spectral 
fragmentation. Let us take two cases in which FSs are 
[1,0,0,1,0,0,1] and [0,0,0,0,1,1,1] with a 2-FS request. 
In the first case, there are many spectral losses, mak-
ing it impossible to assign the 2-FS request. The 
second case allocates FSs consecutively, so there is 
no spectrum loss and 2-FS requests can be allocated. 
Therefore, preventing spectral fragmentation can 
allocate more requests. 

4.   DRL-based RSA

An overview of dynamic RSA in the format of a 
well-known DRL modeling is shown in Fig. 3. At 
each time step, the agent takes an action, and the 
action space is pre-defined at the formulation phase. 
For example, when DRL is applied to the routing 
subproblem that selects one of the KSPs, the action 
space is {1, 2, ..., K}, the action of which is mapped 
to the corresponding shortest path. Next, the agent 
receives an observation and reward from the environ-
ment. Observation is the status of the current environ-
ment which includes a request and a status of FS uti-
lization. Reward is a value that represents how good 
the action is. An agent takes actions on the basis of 

the observation, and parameters of the agent’s action-
decision function, i.e., a deep neural network (DNN) 
is updated to maximize the total number of rewards. 

One of the key problems with DRL-based RSA is 
how to define the action space; assignable FSs vary 
time to time and depends on routing paths. Figure 4 
shows an example of the FS selection from action 
spaces proposed in a previous study [4]. The action 
space is {1, 2}, the action of which is mapped to 
assignable candidates. In case 1, the first candidate is 
1–2 FSs, and the second one is 6–7 FSs. The DNN 
determines which candidate should be used to 
accommodate as many future connection requests as 
possible. Unlike case 1, the problem in case 2 is that 
the number of assignable candidates is less than the 
size of the action space. In this case, for actions that 
are not mapped to any assignable candidates, block-
ing is mapped; the blocking action is selected, and its 
connection request is rejected. Since this definition of 
action cannot be used to evaluate all assignable can-
didates properly when the size of the action space is 
less than the number of assignable candidates, a 
trained agent would be suboptimal. Therefore, effi-
cient DRL-based RSA algorithms need to be flexible 
in accordance with the changing number of assign-
able candidates while avoiding spectral fragmenta-
tion. 

Fig. 3.   Overview of DRL-based RSA.
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5.   Mask RSA

To handle the dynamic changes in the number of 
assignable candidates without spectral fragmenta-
tion, our Mask RSA masks unassignable candidates 
to take into account assignable ones. Mask RSA is 
based on our past study [5].

First, we explain the definition of an action space in 
Mask RSA. Mask RSA implements routing by select-
ing one of the KSPs, and SA is executed by selecting 
the first index of used FSs. Thus, an action space in 
Mask RSA is defined as {1, 2, ..., S × K, S × K + 1}, 
where S and K are the numbers of FSs and paths, 

respectively. The option of an action is do-nothing; if 
assignable resources do not exist in a KSP, take the 
action of do-nothing, which leads to blocking. For 
example, when the selected action number is 120, (1) 
do-nothing if 120 > S × K; otherwise (2) the selected 
path is 120/S  and the start index of used FSs is 120 
mod S. This formulation makes an agent select a rout-
ing path and FSs concurrently.

Figure 5 gives an overview of Mask RSA infer-
ence. To handle dynamic changes in the number of 
assignable candidates, the masking approach is used. 
First, for each routing path, an assignable boundary 
slot mask (ABSM) is generated as a vector with its 

Fig. 4.   Example of FS selection.
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assignable position at a boundary of 1; otherwise, 0. 
An ABSM can prevent spectral fragmentation since it 
takes into account only boundaries. Next, a do-noth-
ing mask is created; 0 when assignable candidates 
exist among KSPs, otherwise 1. Finally, both K 
ABSMs and do-nothing mask are concatenated to 
generate an RSA assignable mask (RSA2M). Let soft-
max() and argmax() be softmax and argmax func-
tions, respectively. The mapping function from con-
volutional neural network (CNN) output to an action 
is written as

Action no. = argmax (softmax(out  RSA2M)),
where out is a DNN output vector, and  is the Had-
amard product. This mask prevents both the examina-
tion of unassignable choices and spectral fragmenta-
tion. 

6.   Demonstration

We evaluated the performance of Mask RSA by 

comparing it with the KSP-FF algorithm through 
simulations. The simulations involved a dynamic 
traffic scenario in which requests were generated on 
the basis of a Poisson process following a uniform 
traffic distribution. The average arrival rate and ser-
vice duration for training were 10 and 12, respec-
tively. The requested FS width was randomly selected 
in the range of 1 to 8. The tested networks were 
JPN25 (25 nodes and 43 links) and JPN48 (48 nodes 
and 82 links) [6]. Each FS was set to be 12.5 GHz, 
and each link had 320 FSs.

Figure 6 shows request blocking probabilities ver-
sus traffic loads from 110 to 200 Erlangs. In both 
networks, our Mask RSA outperformed the KSP-FF 
algorithm even when the traffic load differed from 
that used in training. These simulations in two topolo-
gies showed that the masking approach enabled effi-
cient RSA regardless of the network size or traffic 
load used for training; accordingly, Mask RSA out-
performed the KSP-FF algorithm.

Fig. 6.   Simulation results.
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7.   Further studies

In this article, we introduced the application of 
DRL to dynamic optical network planning in EONs. 
The proposed DRL-based RSA algorithm, Mask 
RSA, is enhanced with domain-specific knowledge, 
outperforming heuristic algorithms. We plan to 
expand our study to more complicated networks, e.g., 
multi-core, multi-layer networks, and impairment-
aware RSA, to enable more efficient network plan-
ning. 
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