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1.   Background

Under the concept of cyber-physical systems 
(CPS), efforts are underway to collect various types 
of sensor information in the real world (the physical 
system) via networks, analyze the information col-
lected in cyberspace constructed on an information-
processing platform, and use the analysis results for 
controlling systems in the real world and distributing 
data between systems. As use cases of CPS [1] under 
the Innovative Optical and Wireless Network 
(IOWN), area management (such as surveillance 
cameras in smart cities), mobility management (such 
as autonomous vehicles), and industry management 
have been studied to enhance their functionality and 
develop new social infrastructures.

Unlike the conventional Internet and cloud comput-
ing, a CPS must collect a large amount of information 
from a huge number of devices, such as cameras and 
sensors, and requires a mechanism to efficiently col-
lect a huge amount of upstream traffic through the 

network. In use cases of self-driving buses and auto-
mated guided vehicles, feedback control (actuation) 
of the physical system is executed from cyberspace 
by using sensing information such as video streams 
and positional information of the physical system in 
a real-time manner. In such cases, not only the net-
work but also the computing infrastructure that con-
stitutes the cyberspace and system on the device side 
(i.e., the physical system) must satisfy the require-
ments for low latency and stable data processing on 
an end-to-end (E2E) basis. We give an overview on 
the technology of the Cooperative Infrastructure Plat-
form we are developing—to provide mission-critical 
services (such as CPS) under IOWN—and describe a 
field demonstration of the platform in smart agricul-
ture.
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2.   Overview of the Cooperative 
Infrastructure Platform

2.1   Concept and basic architecture
The Cooperative Infrastructure Platform is an infra-

structure technology for providing advanced services 
that cannot be provided by the conventional Internet 
or cloud computing by using the All-Photonics Net-
work and various wireless networks and linking their 
functions with an information-processing infrastruc-
ture and device functions. The basic architecture of 
this platform is shown in Fig. 1. The platform con-
sists of elemental and control functions in the infor-
mation processing (I), network (N), and device (D) 
domains, which are cooperatively controlled to sat-
isfy mission-critical service requirements in an E2E 
manner. The elemental functions of each domain are 
intended to be configurable by combining functions 
in accordance with the services to be provided. This 
will enable flexible disposition of functions as a foun-
dation for multi-access edge computing and edge 
datacenters.

2.2   Cooperative control among domains
We explain inter-domain cooperative control 

through the Cooperative Infrastructure Platform on 
the basis of specific use cases. A use case of auto-

mated driving of farm tractors and of the cooperative 
control of the tractor are outlined in Fig. 2. When an 
automated tractor moves from field A to field B, it 
must send a video stream for remote monitoring to 
the monitoring center via multiple wireless accesses 
via a private fifth-generation mobile communication 
system (5G) and carrier 5G, and in the event of an 
emergency, the system must be shut down remotely. 
The operator must therefore monitor and control the 
tractor remotely at all times, and the monitoring 
images and control signals must be transmitted with-
out being affected by switching from one wireless 
network to another.

The procedure of the Cooperative Infrastructure 
Platform is outlined as follows. First, the position of 
the tractor is measured using a high-precision Global 
Navigation Satellite System installed on the tractor. 
Next, the driving route is predicted on the basis of the 
obtained positioning information, and the quality of 
the wireless network at the future location is predict-
ed. If the network quality is predicted to degrade to 
the extent that the transmission of monitoring images 
or control signals is affected, the wireless network is 
switched from private 5G to carrier 5G, for example, 
before the quality actually degrades. Cooperative 
operation of the I, N, and D domains in this manner 
enables seamless switching between multiple wireless 

Fig. 1.   Overview of Cooperative Infrastructure Platform.
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networks.

3.   Initiatives for applying the Cooperative  
Infrastructure Platform to smart agriculture

NTT Network Service Systems Laboratories is 
working on applying the Cooperative Infrastructure 
Platform to agriculture, which is facing labor short-
ages due to declining birthrate and aging population. 
Under an industry-academia-government collabora-
tion agreement between Hokkaido University, the 
city of Iwamizawa, Hokkaido, NTT, NTT EAST, and 
NTT DOCOMO, we have been researching and 
developing technology for achieving world-class 
smart agriculture by using cutting-edge robotics and 
IOWN information and communication technology. 
In November 2020, we conducted a demonstration 
experiment [2] in Iwamizawa. The benefits provided 
by our platform are discussed below with a focus on 
the experiment.

3.1   �Challenges concerning level-3 autonomous 
driving of agricultural machinery

One of the issues attracting attention in the agricul-
tural field is level-3 automated driving of agricultural 
machinery, i.e., monitoring and controlling the 
machinery from locations far from the field such as 

monitoring centers. As in the case of cars, automation 
of agricultural machinery is categorized as different 
levels, and level-2 agricultural machinery that can 
operate automatically in an unattended state (but 
under the user’s visual supervision) has been com-
mercialized. The user monitors the target agricultural 
machinery and carries out emergency operations, 
such as stopping the machinery in case of danger, 
either by direct visual observation from around the 
field or using a tablet via a local communication net-
work such as a wireless local area network. Note that 
such commercially available automated agricultural 
machinery is equipped with cameras and distance 
sensors to autonomously detect hazards and auto-
matically stop the machinery.

For level-3 automated driving, monitoring images 
and control information must be transmitted between 
remote locations and the agricultural machinery via 
communication networks such as 5G/Long-Term 
Evolution (LTE). In addition to covering agricultural 
work in fields, level-3 includes driving in sheds and 
on roads connecting fields. Enabling remote monitor-
ing control of multiple agricultural machinery from a 
remote monitoring center should result in further 
labor saving regarding all agricultural work using 
agricultural machinery and development of new busi-
nesses based on the sharing model. However, to  

Fig. 2.   Cooperative control among domains.
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conduct surveillance control remotely, in addition to 
transferring the video from machinery with high 
quality, it is necessary for the remote operator to carry 
out an emergency stop if the surveillance video  
indicates an impending emergency, and achieving 
stable remote monitoring with low latency across the 
entire system (including the network) is a technical 
challenge.

3.2   �Field demonstration of automated driving of 
agricultural machinery using the Coopera-
tive Infrastructure Platform

As mentioned above, the Cooperative Infrastruc-
ture Platform aims to provide the added value neces-
sary for networks as social infrastructure by coopera-
tively operating multiple elemental technologies. The 
overall structure of the content demonstrated in 
Iwamizawa and an overview of the operation in each 
scenario are shown in Figs. 3 and 4.

In scenario A, as a component of cooperative-
infrastructure-platform technology, an uninterrupted 
network is implemented, and stable remote monitor-
ing and control of autonomous driving is achieved. In 
particular, E2E overlay network technology and 
multi-wireless-quality-prediction technology (Cra-
dio®) [3] are used to enable agricultural machinery to 
run automatically across multiple networks. This 
automatic running is enabled by automatically 

switching to an appropriate network before commu-
nication quality fluctuates or deteriorates, as predict-
ed using artificial intelligence. The results of a dem-
onstration in which a farm tractor was driven auto-
matically on a farm road in Iwamizawa are shown in 
Fig. 5. In this demonstration, the network was suc-
cessfully switched automatically—without interrupt-
ing communication—by using the above-mentioned 
technologies.

In scenario B, the processing of the video stream 
for remote monitoring is streamlined using a stream-
merge function that efficiently processes multiple 
video streams, and utilization efficiency of server 
capacity for image analysis of such obstacle detection 
is improved using an inference-processing platform 
technology that optimizes various resources such as 
central processing units and graphics processing 
units. In addition, Data-Stream-Assist technology [4] 
enables simultaneous use of real-time video for mul-
tiple purposes (such as remote monitoring and image 
analysis) while reducing network load by replicating 
video streams at the packet level with low delay for 
such multiple applications. 

In scenario C, network-cooperation device-control 
technology is used to support the control of agricul-
tural machinery in response to changes in network 
quality. The effectiveness of this technology in terms 
of automatically stopping a tractor safely when the 

Fig. 3.   Overview of field demonstration involving automated driving of agricultural machinery.
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network quality deteriorated to the level at which the 
surveillance video could not be transmitted was con-
firmed.

4.   Future developments

The Cooperative Infrastructure Platform we are 
developing to provide mission-critical services under 

IOWN was discussed, and a field demonstration of 
remote monitoring and control of automated tractor 
driving conducted in the city of Iwamizawa, Hok-
kaido was described. In the future, we will expand the 
applicability of the Cooperative Infrastructure Plat-
form and establish an integrated architecture and 
elemental technologies through studying use cases of 
high-speed moving vehicles (such as advanced  

Fig. 4.   Overview of operation in demonstration scenario.
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autonomous vehicles) in addition to smart agricul-
ture.
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