
NTT Technical Review 51Vol. 19 No. 10 Oct. 2021

1. Introduction

Real-time network-traffic monitoring is important
for managing network services in a datacenter. Data-
center traffic has been diversifying as a result of
advances in network virtualization technology such
as software-defined networking [1] and network
function virtualization [2]. Therefore, network opera-
tors require a real-time network-traffic-monitoring
system to detect problems in the virtual network.

A virtual-network-traffic-monitoring system con-
structed within a server enables the monitoring of
communication with external machines and between

virtual machines (VMs) in the server. However, in-
server monitoring degrades the performance of VMs
because the virtual-network-traffic-monitoring sys-
tem uses the server’s computing resources. To avoid
this problem, such a system should be constructed on
the virtual network. In this case, it must monitor vir-
tual-network traffic to multiple servers. Traffic-mon-
itoring software is not suitable for monitoring a high
volume of virtual-network traffic because it cannot
handle high-load processing such as analyzing encap-
sulated packets and classifying network traffic using
many header fields at high speed. We propose a real-
time virtual-network-traffic-monitoring system with

Regular Articles

Real-time Virtual-network-traffic-
monitoring System with FPGA
Accelerator
Yuta Ukon, Shuhei Yoshida, Shoko Ohteru,
and Namiko Ikeda

Abstract
There is a growing demand for a virtual-network-traffic-monitoring system for managing and

controlling network services. Such a system must be able to handle high-load processing such as
analyzing encapsulated packets and network-traffic classification using many header fields. To visualize
network traffic for a virtual machine in real time, we propose a real-time virtual-network-traffic-
monitoring system with a field-programmable gate array (FPGA) accelerator. Our system consists of a
resource-saving hash-based network-traffic classifier (NTC) that classifies virtual network traffic at high
speed using many search conditions. The hash-based NTC reduces memory resources by using a two-
step hash search. Our system with this hash-based NTC provides a real-time visualization of multiple
statistics such as the number of packets, bytes, microbursts, and histograms of jitter and latency for each
virtual machine. To verify the performance of the hash-based NTC, we evaluated the number of searches
per input packet. As a result of classifying virtual extensible local area network (VXLAN) packets into
10,000 categories using 17 header fields, the average number of searches executed with the hash-based
NTC was about one-fourth that of a search-tree-based NTC. In addition, memory and logic-resource
usage of the hash-based NTC were on average about 40 and 80%, respectively, which were less than
those of several FPGA-based ternary content addressable memories with the same rules. Finally, we
demonstrated that our system with the hash-based NTC visualizes VXLAN traffic for each virtual
machine in real time.

Keywords: traffic monitoring, virtual network, FPGA, hash-based search

Regular Articles

52NTT Technical Review Vol. 19 No. 10 Oct. 2021

a field-programmable gate array (FPGA) accelerator
that processes encapsulated packets at high speed.

Our system visualizes virtual-network traffic at the
VM, server, and network level to identify the cause of
failure in network service. To provide this function,
the system must have a network-traffic classifier
(NTC) to classify virtual-network traffic. NTCs using
a search tree [3, 4], which are often used in traffic-
monitoring software, do not operate at high speed on
the FPGA because it takes many processing cycles to
search for a rule consisting of multiple conditions. A
ternary content addressable memory (TCAM) [5–8],
on the other hand, enables high-speed processing by
searching for rules in parallel. However, virtual-net-
work-traffic classification requires a large amount of
memory resources when using many search condi-
tions. Therefore, it may not be possible to implement
a TCAM with sufficient rules in the FPGA. To clas-
sify virtual-network traffic using more rules, our
system consists of a resource-saving NTC based on a
hash method. This hash-based NTC uses a two-step
hash search to reduce the memory resources needed.

The rest of the article is organized as follows. In
Section 2, we introduce our real-time virtual-net-
work-traffic-monitoring system with an FPGA accel-
erator. Section 3 discusses the shortcomings of con-
ventional NTCs and describes our hash-based NTC.
Section 4 discusses the experimental results from
evaluating our hash-based NTC’s processing perfor-
mance and circuit area. Finally, Section 5 concludes
the article.

2. Our virtual-network-traffic-monitoring
system with FPGA accelerator

The systems described in this article are for moni-
toring virtual-network traffic on a network. Figure 1
shows an example of monitoring for four VMs imple-
mented on two servers. A network-traffic-monitoring
system visualizes network traffic for each VM by
analyzing packets copied with a router and network
test access point. Such a system must process many
encapsulated packets at high speed. High-speed
packet processing can be achieved using an FPGA
accelerator. An FPGA accelerator can change its con-
figuration when the target network changes. There-
fore, an FPGA-based network-traffic-monitoring
system is suitable for monitoring a virtual network
that continues to evolve rapidly.

2.1 System architecture
Our virtual-network-traffic-monitoring system uses

an FPGA accelerator to analyze and classify encapsu-
lated packets at high speed and calculate multiple
statistics such as the number of packets, bytes, micro-
bursts, and histograms of jitter and latency. These
statistics are visualized using open-source software
such as Kibana [9] and Zabbix [10]. The system also
captures packets received before and after detecting
microburst traffic. This function helps reduce the cost
analyzing network failures.

Figure 2 shows a block diagram of our system. The
FPGA accelerator contains a packet receiver, packet-
header analyzer, NTC, statistics aggregator, and
microburst detector [11, 12]. The packet receiver sup-
ports 10-Gigabit Ethernet. The packet-header analyzer

Fig. 1. Network-traffic monitoring using virtual-network-traffic-monitoring system.

Server 1

VM0 VM1

Deletion

Server 2

Addition

VM2 VM3 VM4

Server 1 Server 2

VM0 VM1

VM2 VM3

Packet mirroring

…

Virtual-network-traffic-
monitoring system

External
network

Regular Articles

NTT Technical Review 53Vol. 19 No. 10 Oct. 2021

analyzes a virtual extensible local area network
(VXLAN) and virtual LAN (VLAN) packet and
extracts several header fields from the packets. This
analyzer also supports packets encapsulated in both
VXLAN and VLAN. Although analyzing an encap-
sulated packet requires more calculation than analyz-
ing an un-encapsulated packet, the packet-header
analyzer achieves high throughput by pipeline pro-
cessing. The NTC uses inner header fields as well as

outer header fields to classify the packets in accor-
dance with the VM, server, and network. Table 1
shows the 17 header fields used in the NTC. Since
classification using multiple header fields increases
the amount of calculation, the system requires a high-
performing NTC to process many packets at high
speed. The statistics aggregator aggregates the num-
ber of packets, bytes, and histograms of jitter and
latency for each VM, server, and network. These

Fig. 2. Block diagram of our virtual-network-traffic-monitoring system with FPGA accelerator.

Commodity server

FPGA accelerator

NTC
Statistics

aggregator

Interface

Middleware

Microburst
detector

Network-traffic visualizer

Packet
receiver

Packet-
header

analyzer

Table 1. Header fields used for virtual-network-traffic classification.

No. Header Field # of bits

1

Outer Ethernet

Source MAC address 48

2 Destination MAC address 48

3 VLAN ID 12

4

Outer IP

Source IP address (v4 and v6) 32 or 128

5 Destination IP address (v4 and v6) 32 or 128

6 IP protocol number 8

7
Outer UDP

Source port 16

8 Destination port 16

9 VXLAN VXLAN network ID (VNI) 24

10

Inner Ethernet

Source MAC address 48

11 Destination MAC address 48

12 VLAN ID 12

13

Inner IP

Source IP address (v4 and v6) 32 or 128

14 Destination IP address (v4 and v6) 32 or 128

15 IP protocol number 8

16
Inner TCP/UDP

Source port 16

17 Destination port

ID: identifier
IP: Internet Protocol
MAC: media access control

TCP: Transmission Control Protocol
UDP: User Datagram Protocol

16

Regular Articles

54NTT Technical Review Vol. 19 No. 10 Oct. 2021

statistics are then sent to the middleware via a PCI
(Peripheral Component Interconnect) Express bus,
and the microburst detector detects network traffic
that increases rapidly within 100 microseconds and
counts the number of microbursts. The microburst
detector captures packets in the ring buffer until a
microburst is detected. This method enables only
packets received before and after the microburst to be
captured. As mentioned above, our system enables
real-time virtual-network-traffic monitoring by
offloading high-load processes to the FPGA accelera-
tor.

3. NTC

To classify network traffic by using a VM, server,
and network, the NTC searches for rules that have
different conditions. For example, outer and inner
Internet Protocol (IP) addresses and VXLAN net-
work interfaces (VNIs) are necessary for VM classi-
fication, whereas only a VNI is used for network
classification. To enable flexible traffic classification,
our system uses an NTC with a partial match search
algorithm. The algorithm can potentially reduce
FPGA memory resources because it requires minimal
rules for flexible classification. Figure 3 shows the
concept of this NTC using the partial match search.
Three input header fields (X1, Y2, and Z3) are com-
pared with four rules consisting of three conditions.
Comparing the input header fields with Conditions 1,
2, and 3, X1 matches the first rule, Y2 matches the
first and fourth rules, and Z3 matches the first and
fourth rules. These input header fields also match
wild cards. Hence, X1 and Y2 also match the second,
third, and fourth rules and the second and third rules,
respectively. From the above, it is determined that the
first and fourth rules match for all the input header

fields. Therefore, the partial match search algorithm
enables flexible searching with a small rule table
since unnecessary conditions can be compressed
using wild cards. In implementing this algorithm, it is
important to suppress the amount of computation for
achieving high-speed operation. It is also important
to suppress the volume of memories and logic
resources because our system has to implement it on
an FPGA.

3.1 Conventional implementation approach
A search tree with wild card nodes can potentially

conserve memory resources by reducing the number
of nodes. However, it may be computationally expen-
sive because all follower nodes of the wild card node
must be checked. Figure 4 shows an example of
network-traffic classification using the search tree
under the same conditions when using the NTC illus-
trated in Fig. 3. In this case, Rule 1 is found as a
matching rule by searching the X1 node of Condition
1, Y2 node of Condition 2, and Z3 node of Condition
3 in this order. Rule 4 is also found by searching all
nodes on the right side of the root node. As this
example shows, almost all nodes must be checked to
find multiple matching rules. The search tree com-
pares input header fields with nodes sequentially;
hence, the processing speed is slow on the FPGA
when using a low clock frequency.

A TCAM enables high-speed classification by
searching rules in parallel. It also classifies network
traffic flexibly using rules consisting of 0s, 1s, and
wild cards. Figure 5 illustrates the TCAM architec-
ture consisting of AND circuits and one-bit comparators

Fig. 3. Concept of NTC using partial match search.

Rule no. Condition 1 Condition 2 Condition 3

1 X1 Y2 Z3

2 * * Z1

3 * * Z2

4 * Y2 Z3

X1 Y2 Z3

Input header fields

Hit

Hit

Wild card

Fig. 4. Network-traffic classification using search tree.

X1

Y2

Z3 Z1

Y2

Z3

Root

*

*

Rule 1 Rule 2 Rule 3 Rule 4

X1 Y2 Z3

Input header fields

Z2Condition 3

Condition 2

Condition 1

Hit Hit

Regular Articles

NTT Technical Review 55Vol. 19 No. 10 Oct. 2021

containing two memories: condition and wild card.
The condition memory holds a one-bit rule, and the
wild card memory holds a valid flag. The one-bit
comparator outputs a high-level signal if the condi-
tion memory matches the input or the wild card
memory is valid; otherwise, it outputs a low-level
signal. The AND circuit collects outputs of one-bit
comparators and determines whether the rule match-
es the input data. For example, if the TCAM shown in
Fig. 5 receives input data “100,” all one-bit compara-
tors in Rules 1 and 2 output the high-level signal. The
AND gates collect these signals and output the
matching vector “110,” which means the input data
match Rules 1 and 2. These one-bit comparators work
in parallel, so the TCAM operates at high speed.
However, the TCAM uses a large volume of memory
and logic resources since it requires two memories
and a comparator for each one-bit comparator. There-
fore, this approach is unsuitable for our system
implementation.

3.2 �Implementation approach for our system
(hash-based NTC)

For the above-mentioned reason, we devised a
hash-based NTC for high-speed virtual-network-
traffic classification. Figure 6 shows the operation of
the hash-based NTC. When receiving the input
header field, the hash-based NTC converts it into a
hash value using the hash function and obtains the
matching vector from the hash table by using that
value as the search key. In this example, Rules 1 and
2 are matched to the input header field X1, and the
matching vector “110” is output with a single access

to the hash table. Therefore, the hash-based NTC
operates at high speed since it can obtain the match-
ing vector with a small number of memory accesses.
The hash-based NTC can also reduce memory and
logic resources because it does not compare the input
and conditions bit-by-bit. Although this NTC does
not allow bitwise wild cards, flexible virtual-net-
work-traffic classification is still feasible by using
wild cards per condition.

Figure 7(a) shows the overall architecture of the
hash-based NTC. The architecture consists of hash
functions, condition comparators, and an aggregator.
The condition comparator evaluates an input header
field using a rule table for one condition. The aggre-
gator collects the evaluation results of the condition
comparators and calculates the matching vector. This
hash-based NTC works at high speed even if the
number of conditions increases because the condition
comparators operate in parallel, making it suitable for
classifying network traffic using many header fields.

A typical hash table uses a large memory space to
avoid memory-address conflict; however, this results
in inefficient memory usage. Our condition compara-
tor solves this problem by searching tables in two
steps. Figure 7(b) shows a detailed diagram of the
condition comparator. It includes the address table
(hash table), multiple candidate memories (CMs),
and a selector. The search mechanism is as follows.
When receiving the hash value, the condition com-
parator divides the hash value into two values: a
search key and reference value. The search key is
used in the address table to extract an address for the
CMs. When a small search key is used, the address
table may output the same CM address for different
inputs due to a memory-address conflict. This problem

Fig. 5. TCAM architecture.

1 0 0

Input

1

1

0

Rule 1

Rule 2

Rule 3

1 - 0 - 0 -

1 - - * 0 -

- * 0 - 1 -

Output

AND circuit

One-bit comparator

Fig. 6. �Operation of hash-based NTC, which obtains a
matching vector from the hash table. The matching
vector is calculated in advance and downloaded to
the hash table.

Rule no. 1 2 3

Condition 1 X1 * X2

Address Value

110

Hash(X2) 011

Rule table

Hash table

X1

Input:
header field

Hash(X1)
Output:

matching
vector

Download calculated
matching vectors

Hash
function

Regular Articles

56NTT Technical Review Vol. 19 No. 10 Oct. 2021

can be avoided using multiple CMs and the selector.
The CMs receive the CM address from the address
table and output candidate values and comparative
values stored at the address. The selector selects one
of the candidate values by comparing the compara-
tive values with the reference value and outputs it as
a matching vector for one condition. If the bit widths
of the reference value and comparative value are suf-
ficient, the selector can select the appropriate candi-
date value. Although this architecture has overhead,
which holds the comparative values in the CMs, the
memory-resource usage becomes highly efficient as
the total usage is reduced by storing candidate values
in the CMs.

The memory-resource usage of the address table
and the CMs can be estimated using the following
equations. Note that MRUAT and MRUCM are memo-
ry-resource usages of the address table and CMs,
respectively.

MRUAT = 2N × log2 R � (1)
MRUCM = C × R × M + C × R × R,� (2)

where N is the bit width of the search key, R is the
number of rules, C is the number of CMs, and M is
the bit width of the reference value. The first and sec-
ond terms on the right side in Eq. 2 are the memory-
resource usage required to store the comparative val-
ues and candidate values, respectively. The MRUAT
increases exponentially for N because the search key

is used as addresses in the table. In contrast, as N
increases, MRUCM decreases because fewer CMs are
used to store candidate values. Due to the trade-off
between Eqs. 1 and 2, the condition comparator
should be designed with the appropriate parameters.

4. Experiment

To verify the advantages of the hash-based NTC,
we evaluated its processing performance and circuit
area.

4.1 Implementation
We designed our hash-based NTC that classifies

VXLAN traffic using rules consisting of 17 condi-
tions. MurmurHash3 [13] was used in the hash func-
tion because it is relatively unlikely to have output
collisions between different inputs. To determine the
optimal parameters for our implementation, we eval-
uated the maximum number of output collisions of
the hash function. Figure 8 shows the maximum
number of output collisions when 500 random hash
keys were input and the memory-resource usage of
the hash-based NTC was estimated from Eqs. 1 and
2. Note that the maximum numbers of output colli-
sions were the highest values in several simulations.
The bit width of the hash function output was set to
32-bit. This figure shows that the maximum number
of collisions decreases as the bit width of the search
key increases. However, the memory-resource usage

Fig. 7. Block diagrams of hash-based NTC: (a) overall architecture and (b) detailed condition comparator.

...

...

Aggregator

(a)

Address table (hash table)

...

Selector

Reference
value

Search key

(b)

Output:
matching vector

Output:
matching vector for one condition

Condition
comparator

Condition
comparator

Condition
comparator

Hash
function

Hash
function

Hash
function

Input:
 header fields

Input:
hash value

Divide hash value into two values:
search key and reference value

Candidate
memory #0

Candidate
memory #n-1

Regular Articles

NTT Technical Review 57Vol. 19 No. 10 Oct. 2021

of the hash-based NTC increases when using 16-bit
or higher search keys because the memory-resource
usage of the address table increases rapidly. The fig-
ure also shows that the memory-resource usage of the
hash-based NTC is minimized using the 15-bit search
key and two CMs for each condition comparator.
Given these results, we used the parameters shown in
Table 2 for the hash-based NTC and implemented it
with an Arria 10 GX1150 FPGA [14].

4.2 Evaluation
Figures 9(a) and (b) show the average number of

searches for 100,000 inputs for a search-tree-based
NTC and the hash-based NTC. Note that these results
were evaluated through simulation. We used the
search-tree-based NTC with a Patricia tree [3], which
can efficiently store long strings, for comparison.
Figure 9(a) shows that on average the search-tree-
based NTC executed more searches than the hash-
based NTC when there were more than ten rules due
to the increase in nodes to be searched. The average
number of searches of the hash-based NTC was also

constant regardless of the number of rules. These
results indicate that each condition comparator
accessed the internal memories only once for each
input. Figure 9(b) shows that the average number of
searches using 17 conditions in the hash-based NTC
is about one-fourth that of the search-tree-based
NTC. The difference in the throughput of these NTCs
is even greater since the hash-based NTC executes
the search for each condition in parallel.

We implemented these NTCs, which classify virtu-
al-network traffic using 17 conditions, on an FPGA
operating at 100 MHz. The search-tree-based NTC
processed 1.3 million packets per second, meaning
that it is capable of wire-speed processing for an input
rate of about 0.9 Gbit/s. The hash-based NTC pro-
cessed one hundred million packets per second and
executed wire-speed processing for a higher input
rate of about 67 Gbit/s.

Table 3 shows the logic- and memory-resource
usages of the hash-based NTC and several FPGA-
based TCAMs. The resource usage of the hash-based
NTC was calculated using the Intel Quartus Prime
version 17.1.1. The amount of memory and logic
resources per unit was calculated by dividing the
logic- and memory-resource usage by the product of
the number of rules and total bits of the conditions. In
other words, these indicators are the amount of
resources required to store a one-bit rule.

Comparing the indicators of each circuit, the mem-
ory- and logic-resource usage of the hash-based NTC
was on average about 40 and 80% less than that of
several FPGA-based TCAMs, respectively. This

Fig. 8. �Maximum number of output collisions when 500 random hash keys are input to the hash function using MurmurHash3
and memory-resource usage of the hash-based NTC.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

0

2

4

6

8

10

8 9 10 11 12 13 14 15 16 17 18 19 20

Search key (bit)

Memory resource usage Maximum number of collisions

M
ax

im
um

 n
um

be
r

of
 c

ol
lis

io
ns

M
em

or
y-

re
so

ur
ce

 u
sa

ge
 (

kb
it)

Table 2. Implementation parameters.

Parameter Variable Value

Search key (bit) N 16

Maximum # of address collisions R 4

of rules C 500

Reference value (bit) M 16

Regular Articles

58NTT Technical Review Vol. 19 No. 10 Oct. 2021

indicates that the hash-based NTC can have more
rules than FPGA-based TCAMs while using the same
amount of FPGA resources.

Finally, we evaluated the performance of our sys-
tem with the hash-based NTC. Figure 10 shows the
throughput for VXLAN short packets with a length of

116 bytes. The results indicate that the system
achieved a theoretical performance of 9.19 mega-
packets per second (Mpps) throughput at an input rate
of 10 Gbit/s. The figure also shows that the system
processed the packets without packet loss under a
high workload. Figure 11 shows the results of

Fig. 9. �Average number of searches per input for (a) number of rules and (b) number of conditions. The number of rules in
the experiment was 500.

0

20

40

60

80

1 10 100 1000
Number of rules

Search-tree-based NTC

Hash-based NTC

(a)

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17
Number of conditions

Search-tree-based NTC

(b)

Hash-based NTC

A
ve

ra
ge

 n
um

be
r

of
 s

ea
rc

he
s

A
ve

ra
ge

 n
um

be
r

of
 s

ea
rc

he
s

Table 3. FPGA-resource usage of the hash-based NTC and FPGA-based TCAMs.

Design Size Speed (MHz) LUTs Memory (kbit) LUTs/Size Memory/Size

Xilinx Locke [6] 256 × 32 130 4576 1152 0.56 140.63

UE-CAM [7] 512 × 36 202 3652 1152 0.2 62.5

RAM-based TCAM [8] 1024 × 150 150 48,552 9792 0.32 63.75

Hash-based NTC

LUT: look-up table
RAM: random access memory

500 × 832 100 26,480 19,040 0.06 44.7

Fig. 10. Throughput for VXLAN packets with the shortest length.

0

2

4

6

8

10

0 20 40 60 80 100 120
Time (s)

T
hr

ou
gh

pu
t (

M
pp

s)

Regular Articles

NTT Technical Review 59Vol. 19 No. 10 Oct. 2021

visualizing the number of packets in units of VM and
VNI using Kibana. The system classified VXLAN
traffic flexibly with the hash-based NTC and visual-
ized communication volumes of different groups at
short intervals.

5. Conclusion

We proposed a real-time virtual-network-traffic-
monitoring system with an FPGA accelerator to
monitor VXLAN and VLAN traffic. The key module
in the system, the hash-based NTC, attained high-
speed, flexible virtual-network-traffic classification
with fewer FPGA resources by using a two-step hash
search. The experimental results indicate that the
hash-based NTC used fewer logic and memory
resources compared with several FPGA-based
TCAMs. Finally, we determined that our system with
the hash-based NTC was able to visualize the amount
of VXLAN traffic in real time for a 10-Gbit/s input
rate.

References

[1]	 D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined Networking: A
Comprehensive Survey,” Proc. IEEE, Vol. 103, No. 1, pp. 14–76, Jan.
2015.

[2]	 R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R.
Boutaba, “Network Function Virtualization: State-of-the-art and
Research Challenges,” IEEE Commun. Surv. Tutor., Vol. 18, No. 1,
pp. 236–262, 1st quarter 2016.

[3]	 K. Sklower, “A Tree-based Packet Routing Table for Berkeley UNIX,”
USENIX Winter, pp. 93–104, Dallas, TX, USA, Jan. 1991.

[4]	 P. Gupta and N. McKeown, “Algorithms for Packet Classification,”
IEEE Netw., Vol. 15, No. 2, pp. 24–32, Mar. 2001.

[5]	 K. Pagiamtzis and A. Sheikholeslami, “Content-addressable Memory
(CAM) Circuits and Architectures: A Tutorial and Survey,” IEEE J.
Solid-State Circuits, Vol. 41, No. 3, pp. 712–727, Feb. 2016.

[6]	 K. Locke, “Parameterizable Content-addressable Memory,”
Application Note: Xilinx FPGAs, XAPP1151 (v1.0), Mar. 2011.

[7]	 Z. Ullah, M. K. Jaiswal, R. C. C. Cheung, and H. K. H. So,
“UE-TCAM: An Ultra Efficient SRAM-based TCAM,” Proc. of
TENCON 2015 – 2015 IEEE Region 10 Conference, Macao, China,
Nov. 2015.

[8]	 W. Jiang, “Scalable Ternary Content Addressable Memory
Implementation Using FPGAs,” Proc. of the ninth ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems (ANCS), pp. 71–82, San Jose, CA, USA, Oct. 2013.

[9]	 Y. Gupta, “Kibana Essential,” Packt Publishing Ltd, 2015.
[10]	 R. Olups, “Zabbix 1.8 Network Monitoring,” Packt Publishing Ltd,

2010.
[11]	 S. Yoshida, Y. Ukon, S. Ohteru, H. Uzawa, N. Ikeda, and K. Nitta,

“FPGA-based Network Microburst Analysis System with Flow
Specification and Efficient Packet Capturing,” Proc. of 2020 IEEE
31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 29–32, July 2020.

[12]	 S. Yoshida, Y. Ukon, S. Ohteru, H. Uzawa, N. Ikeda, and K. Nitta,
“FPGA-based Network Microburst Analysis System with Efficient
Packet Capturing,” J. Opt. Commun. Netw., Vol. 13, No. 10, pp. E72–
E80, Oct. 2021.

[13]	 A. Appleby, “MurmurHash,” 2008, https://sites.google.com/site/
murmurhash/

[14]	 “Intel®Arria®10 Device Overview,” A10-OVERVIEW, Nov. 2018.

Fig. 11. Network-traffic visualization by VM and VXLAN network.

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/

Regular Articles

60NTT Technical Review Vol. 19 No. 10 Oct. 2021

Yuta Ukon
Deputy Senior Engineer, NTT Advanced Tech-

nology Corporation.
He received a B.E. and M.E. in engineering

from Osaka University in 2010 and 2012. In 2012
he joined NTT Microsystem Integration Labora-
tories and has been engaged in research and
development on a packet processing accelerator
and packet processing circuit. He moved from
NTT Device Innovation Center to NTT Advanced
Technology in July 2021. His research interests
include hardware accelerators for software-
defined networking and network function virtu-
alization, hardware and software co-design tech-
nologies, and packet processing circuit. He is a
member of the Institute of Electronics, Informa-
tion and Communication Engineers (IEICE).

Shoko Ohteru
Research Engineer, NTT Device Innovation

Center.
She received a B.S. in physics from Ochano-

mizu University, Tokyo, M.S. in physics from the
University of Tokyo, and Ph.D. in engineering
from Nihon University, Tokyo, in 1992, 1994,
and 2011. She joined NTT Telecommunication
Networks Laboratories in 1994. She is currently
with the NTT Device Innovation Center. She is a
member of IEICE.

Shuhei Yoshida
Engineer, NTT Device Innovation Center.
He received a B.E. and M.E. in computer sci-

ence and systems engineering from Kobe Univer-
sity, Hyogo, in 2014 and 2016. In 2016, he joined
NTT Device Innovation Center and has been
engaged in research and development on hard-
ware design methodology and FPGA-accelerated
systems. He is a member of IEICE.

Namiko Ikeda
Senior Research Engineer, NTT Device Inno-

vation Center.
She received a B.E. and M.E. in inorganic

materials from Tokyo Institute of Technology in
1996 and 1998. In 1998, she joined NTT, where
she engaged in research and development of an
image-enhancement algorithm for single-chip
fingerprint sensor/identifier large-scale integrat-
ed circuits. She is currently with the NTT Device
Innovation Center and engaged in research and
development of a virtual-network-traffic-moni-
toring system with an FPGA accelerator. She is a
member of IEICE.

