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Create a world in which humans and computers 
can understand each other by pursuing common 

ground between them

—It has been about three and a half years since the 
last interview. Can you tell us about the research you 
are currently working on?

In my last interview, in 2018, I focused on the 
question-answering system used in the “Shabette 
Concier” voice-agent service and dialogue systems. 

Since then, my research has further advanced and 
expanded into other fields. Natural language process-
ing has rapidly improved through deep learning, and 
its possible applications have multiplied consider-
ably. For example, the advent of BERT (Bidirectional 
Encoder Representations from Transformers), a natu-
ral-language-processing model, has caused a para-
digm shift of sorts and dramatically improved the 
performance of natural language processing. Over the 
last few years, I have been applying natural-language-
processing techniques based on deep learning to 

Put Your Curiosity First and Try 
Anything—Researchers Should Do 
What They Want to Do; Whatever  
It Takes

Front-line Researchers

Ryuichiro Higashinaka
Visiting Senior Distinguished 
Researcher, NTT Human Informatics 
Laboratories/NTT Communication 
Science Laboratories

Abstract
Dialogue systems have made great progress over the last few 

years due to the application of deep learning and the spread of 
technologies that enable people to interact with voice agents on 
smartphones, personal robots, and other devices. Ryuichiro 
Higashinaka, a visiting senior distinguished researcher of NTT 
Human Informatics Laboratories/NTT Communication Science 
Laboratories and professor of the Graduate School of Informatics, Nagoya University, is aiming to create 
a dialogue system that allows humans and computers to understand each other and intelligently collabo-
rate by clarifying the principles of natural-dialogue interaction between them. We interviewed him about 
the progress of his research and his attitude as a researcher.
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artificial intelligence (AI) systems.
In 2019, as part of the “Todai Robot Project—Can 

a robot get into the University of Tokyo?” launched 
by the National Institute of Informatics, we devel-
oped an AI robot—using a technology similar to 
BERT and the latest technology at the time—that 
takes the written-English subject of the National Cen-
ter Test for University Admissions and scored a high 
mark of 185 points (deviation score of 64.1). NTT 
released a press release about this achievement [1]. 

We also recently created the chatbot called “Nariki-
ri AI Amadeus Kurisu” (Fig. 1), which has greatly 
improved the accuracy of responses in dialogues 
compared with the previously introduced “Ayase AI” 
chatbot. Narikiri AI (narikiri means impersonation) 
uses a unique method of creating a character of a 
chatbot based on training data obtained from users 
and fans who describe how a certain character speaks, 
thinks, etc. We received 45,000 samples for the train-
ing data of Narikiri AI Amadeus Kurisu, and by using 
deep learning, we were able to create a character with 
high accuracy in response generation. Then, in July 
2021, we created an opportunity for fans to interact 
with the chatbot by using the direct-message feature 
of Twitter. Although limited to three days, the event 
was very well received; in fact, some participants had 
hundreds of conversations with the chatbot, and the 
event received a high rating of 4.59 out of 5 in a sur-
vey. My paper on Narikiri AI was accepted by a top 
conference on language processing [2], so I’m proud 
that this work has been recognized as a significant 
academic achievement. However, some of the chat-
bot’s responses were not suitable for the character, so 
we are currently analyzing user feedback and improv-
ing the chatbot.

—The conversation between computers and humans 
seems to be evolving. Have we reached a level at 
which computers and humans can mutually under-
stand each other?

I’m afraid we haven’t reached that level yet. To 
enable computers and humans to understand each 
other and communicate, we need to develop a system 
that can build common ground between them. Com-
mon ground is the content that is understood by the 
participants in conversation with each other. I believe 
that once common ground between computers and 
humans can be established, mutual understanding can 
be increased and communication between them will 
evolve rapidly, making collaboration between dia-
logue systems and humans possible. Although com-
mon ground is a concept that has been discussed in 
textbooks for more than 20 years, it has not been 
engineered or implemented in a system. However, I 
decided to pursue this theme because I believe that if 
common ground cannot be established, dialogue sys-
tems won’t progress, and the next generation of such 
systems won’t be viable.

Common ground is invisible because it is in the 
mind, which made research on common ground dif-
ficult. To visualize the process of establishing com-
mon ground, we set up a task called CommonLayout 
in which each of the two participants views their own 
figure-arrangement screen and cooperatively deter-
mines the placement of figures while interacting with 
each other via text chat and collected large-scale 
dialogue data between people executing this task 
(Fig. 2) [3]. We quantified common ground by con-
stantly recording the placements of the figures and 
measuring the distance between each figure placement 

Fig. 1.   Narikiri AI Amadeus Kurisu chatbot.

Narikiri AI Amadeus Kurisu

A time machine is not
possible. But it cannot
be said that it is
impossible.

May I ask why you think
so?

What makes you think it
is not impossible?

The reason for thinking
so is simple: science
hasn’t advanced enough
to interfere with the past.

We cannot change the
past. But we can change
the future. That’s why.
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(the sum of vector differences defined between any 
two figures) during the task. In other words, we made 
it possible to visualize the degree to which common 
ground was being established at each point during the 
dialogue. By analyzing these data, we found that the 
process of establishing common ground can be cate-
gorized into several clusters. This research was pre-
sented at the annual conference of the Association for 
Natural Language Processing and received an award 
for excellence in March 2021. In the process of ana-
lyzing these data, we also learned that so-called  
naming plays a key role in building common ground. 
In particular, humans seem to build common ground 
by naming figures and matching their perceptions  
of those figures with those of others [4].

In addition to the above-mentioned work, to clarify 
the effect of modality (channels of information such 
as text, audio, and video) and social relationships on 
the process of constructing common ground, I’m 
extending my research on the CommonLayout task 
conducted via text chat to construct and analyze a 
corpus (a large-scale collection of natural language 
and other data) composed of audio and video. We 
found that it is easier to establish common ground 
when audio and video are used rather than when only 
audio is used. We also found that it was easier to 
establish common ground when the participants were 
acquainted rather than when they met for the first 
time. The reader might think these findings are obvi-

ous. However, the process of building common 
ground differs according to the conditions, and I 
believe that these differences will lead to important 
findings. By analyzing the effects of modality and 
social relationships on the establishment of common 
ground, we hope to create a dialogue robot that can 
smoothly establish common ground between com-
puters and humans. I’d also like to establish common 
ground from various angles, and we are working on 
the task of naming the shapes of the pieces in a tan-
gram (a puzzle composed of seven pieces dividing a 
square) while the participants are having a dialogue 
during the task.

I want to accelerate my research and expand it 
by combining different disciplines

—How much research on common ground has been 
done?

Although researchers in the philosophy of language 
have examined how humans establish common 
ground, engineering approaches are few and far 
between; in fact, only a few researchers around the 
world are focusing on this theme. I’m keeping my 
eyes open and reviewing the literature, but there are 
currently not many relevant reported studies. There-
fore, to create a future in which AI and humans can 
collaborate, I’m accelerating research on this theme 

Fig. 2.   CommonLayout task.

Worker A’s display Worker B’s display

== Worker A started ==
== Worker B started ==
A: Nice to meet you.
B: Nice to meet you too.
B: What shall we make?
A: Do you have any
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B: I don’t have any idea.
A: I’m thinking too.
B: The circle in the center
seems to be a nose.
A: Then let’s make a face. 
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== Worker B started ==
A: Nice to meet you.
B: Nice to meet you too.
B: What shall we make?
A: Do you have any
preferences?
B: I don’t have any idea.
A: I’m thinking too.
B: The circle in the center
seems to be a nose.
A: Then let’s make a face.
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with determination. I’m also promoting joint 
research. For example, the above-mentioned tan-
gram-naming task is pursued in a joint research with 
Shizuoka University, and I’m collaborating with Pro-
fessor Yugo Takeuchi, an expert in cognitive science.

I’m also working with Professor Yasuhiro Minami 
of the University of Electro-Communications on 
researching the naming in building common ground I 
mentioned earlier. In addition to studying speech pro-
cessing, Professor Minami is also studying language 
development in young children. Through our collabo-
ration, we are thus able to pursue engineering and 
language development in combination. I’m also col-
laborating with Professor Kazunori Takashio, an 
expert in social robotics at Keio University, on the 
effect of the modality and social relationships in 
building common ground. Through these collabora-
tions, I’m advancing my research on common ground 
by combining various disciplines.

—You seem to be engaged in academically and 
socially significant activities, including active joint 
research.

I think there is academic significance in doing what 
has been avoided so far. When researching dialogue 
systems, it is relatively easy to analyze the verbal 
exchanges that are visible as text and manifested as 
phenomena. However, it is difficult to analyze and 
evaluate what the other party is thinking when they 
say those words. The research on the CommonLayout 
task is to visualize those thoughts and eliminate that 
difficulty. My research is progressing, and I’m confi-
dent that the day is near when we will be able to build 
a dialogue system that enables humans to work 
together with AI when thinking about and deciding 
on product placement and other issues. 

I think that research on dialogue systems is cur-
rently at a standstill. That is to say, deep learning is 
still limited in what it can do. We can have a conversa-
tion with an AI system, but it is still only for a short 
time. If the system forgets yesterday’s communica-
tion, intellectual collaboration between humans and 
AI will not be established. I want to develop AI 
capable of long-term communication to be a partner 
for us humans so that it can accompany us through 
our lifetime.

I believe that by pursuing common ground, we can 
make human society better 20 years or so from now. 
As I say in my book “Chatting Skills of AI” (KADO-
KAWA), I hope to create a world in which humans 
and computers can build a two-way relationship and 

enhance mutual understanding.

Be willing to go beyond your area of expertise

—What qualities are required of researchers today?

Compared with 2001, when I joined NTT, it is now 
possible to conduct many experiments relatively 
inexpensively through crowdsourcing and other 
means. Therefore, I think that researchers are in a 
fortunate environment. On the contrary, companies 
with vast financial and human resources, such as 
GAFA (Google, Apple, Facebook, and Amazon), are 
investing in research and development to rapidly 
bring new products and services to the world. The 
improved research environment has increased the 
tempo of research and development and intensified 
competition.

To survive in these times, researchers are required 
to constantly take on new challenges. It is also neces-
sary to keep in mind our impact on—and contribution 
to—society as we pursue our research. To meet these 
requirements, I believe it is important to be willing to 
go beyond our own area of expertise. Many problems 
can only be solved by incorporating knowledge from 
other research areas, and we are no longer in an era of 
sticking to only one area of specialization such as 
language processing; rather, we are required to have 
a multifaceted and broad perspective. For example, 
when building a dialogue system, we must keep in 
mind the development of laws, etc. and consider soci-
ety, users, etc. in a composite manner; otherwise, 
even if we develop a system born of outstanding 
research, we will not be able to roll it out.

In fact, dialogue systems were not the theme that 
interested me when I joined the company. I wanted to 
pursue machine translation because I loved words, 
but the theme assigned to me was dialogue, which I 
found so interesting that I ended up doing it for 20 
years. Since that experience, I’ve been working with 
the spirit of “let’s try everything.” Basically, I never 
refuse a request.

—What would you like to say to young researchers?

I believe that researchers should do what they want 
to do; whatever it takes. I also believe one of the 
important roles of a senior distinguished researcher is 
to set an example and show that one needs to do what 
one wants to do. It is important to be interested in new 
things, have a multifaceted and broad perspective 
beyond one’s area of expertise, and not be afraid to 
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try anything. Why not start by putting your curiosity 
first and trying anything? When we are young, we 
sometimes think that one mistake means it’s all over. 
Immediately after I joined NTT, I was worried that if 
I did not get a paper accepted by a top conference 
within about three years, I’d be on my way out. For-
tunately, I managed to get a paper accepted with the 
help of my mentor; even so, I was still afraid of 
failure and thought I might be branded an unfit 
researcher.

However, I don’t want young researchers to worry 
about failing. That’s because they can use their fail-
ures to move on to the next stage of their develop-
ment. To put it another way, if you think of years of 
service as the denominator and failure as the numera-
tor, the denominator is small when you are young, so 
the damage of failure may be severe, but as the 
denominator becomes larger, that severity is diluted 
by your longer service, so the way you perceive fail-
ure changes. 

As a member of a corporate organization, you will 
sometimes be obliged to follow company policy and 
instructions from supervisors. However, it is impor-
tant not to abandon what you want to do to focus on 
your obligation but to connect with peers as well as 
with researchers who share similar interests. In my 
case, the connections that I’ve made with the aca-
demic community have been a great help. It is a good 
idea to build relationships not only with people inside 
your company but also with people outside the com-
pany from a young age.
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Learning of depth and bokeh effects from  
natural images with aperture rendering  

generative adversarial networks

—What is research on “learning of depth and bokeh 
effects from natural images” about?

It is difficult to record the three-dimensional (3D) 
world in which we live in as it is. For this reason, it is 
common to record and store two-dimensional (2D) 
images such as photographs instead of 3D informa-
tion.

When people look at photos, they can estimate 3D 
information, such as depth, from their previous expe-

rience and knowledge. However, computers have 
difficulty in doing so because they do not have such 
experience or knowledge. In the future, when we 
think about scenarios where robots support our lives, 
it will become essential for computers to understand 
the 3D world. The easiest way for computers to learn 
is to provide a large number of pairs of 2D images 
and 3D information as training data. Learning would 
be easy because they know the correct answer. How-
ever, this method requires special devices such as 
depth sensors and stereo cameras and is costly.

For this reason, in this research, we created a deep 
learning model that can learn 3D information from 
standard 2D images such as those taken with ordinary 

Learning 3D Information from 2D 
Images Using Aperture Rendering 
Generative Adversarial Networks 
toward Developing a Computer that 
“Understands the 3D World”

Rising Researchers

Takuhiro Kaneko
Distinguished Researcher, NTT 
Communication Science Laboratories

Abstract
When people look at photos, they can estimate three-dimen-

sional (3D) information, such as depth, from their experience and 
knowledge, but computers have difficulty in doing so because 
they cannot have such experience and knowledge. We spoke to 
Takuhiro Kaneko, a distinguished researcher who developed a 
novel deep learning model that can learn 3D information from 
standard 2D images such as those on the web.

Keywords:  generative adversarial networks, unsupervised learn-
ing, depth and bokeh
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cameras and those on the web. When we look at the 
photos, we see that the focus is usually on the object, 
and the background is often blurry. Using these defo-
cus cues as clues, we carry out learning of 3D infor-
mation, especially depth and bokeh effects. In other 
words, if the problem of projecting 3D information 
onto 2D images through a camera is the forward 
problem, for this research, the goal is to solve the 
inverse problem. This problem is challenging because 
it is the so-called “ill-posed problem” of estimating 
3D information from only 2D images that lack vari-
ous information.

—Specifically, through what mechanisms are you 
carrying out learning?

This research is based on a technology called a 
generative adversarial network (GAN). GAN is a so-
called “unsupervised learning model,” which does 
not require pre-determined correct answers, and con-
sists of two neural networks; namely, a generator and 
discriminator. The generator generates a “fake 
image” from a given random variable. On the other 
hand, the discriminator distinguishes two types of 
images, “real images” and the “fake images” gener-
ated by the generator. Because they work adversari-
ally, wherein the generator tries to trick the discrimi-
nator while the discriminator tries to identify the fake 
images precisely, learning can be carried out while 
competing, and as a result, the generator can produce 
realistic images.

Since GAN is a specialized technology for produc-
ing 2D images, it has no connection with the 3D 
world. We, therefore, proposed the “aperture render-
ing GAN (AR-GAN),” which incorporates the optical 
properties of the camera into the GAN. “Aperture” 
refers to the aperture of the camera. By incorporating 
optical constraints due to the aperture of the camera 
when projecting the 3D world into 2D images, the 
generator can learn by associating 2D images, depth 
maps, and bokeh effects.

Figure 1 shows the process flow in the AR-GAN 
generator. The “image generator” is also included in 
the GAN and generates an all-in-focus image when 
given a random variable. The depth generator gener-
ates the depth map that is paired with the image, and 
is unique to AR-GAN. The system then uses these 
pairs of generated data to enable a mechanism simu-
lating the camera aperture. The light field consists of 
25 images, which represent what the image looks like 
in the aperture of the camera. In the center, the image 
created by light coming in through the center of the 
aperture is displayed. When the object is offset from 
the center to the right, an image of the object viewed 
from the right part of the aperture is displayed; and 
when the object is offset to the top of the aperture, an 
image of the object viewed from the top part of the 
aperture is displayed.

It may be easier to imagine the mechanism by mov-
ing your face up, down, left, and right while looking 
at the object in front of your eyes. Objects with focus 
are clearly visible because they are in the same  

Fig. 1.   Process flow in the AR-GAN generator.
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position and do not move when you move your face, 
but objects that are farther away move more when 
you move your face. Therefore, summation of these 
images produces images with bokeh effects. This is 
how the mechanism enables synthesizing a bokeh 
image on the basis of the predicted depth map and 
all-in-focus image using a camera with an optical 
constraint on the light field.

—How is the progress of the research and what are 
the challenges going forward?

Currently, we are able to generate flower images, 
bird images, and human face images. Learning can 
take days, but once it is done, the system can generate 
in a few seconds bokeh images that cannot be distin-
guished from the real images. At present, I think that 
if we narrow down the types of objects, we would be 
able to generate reasonable images.

As for the challenges, one is that depending on the 
type of object, some are easier to learn while others 
are not as amenable to learning. For example, for 
human face images, the shape and position of the 
parts are fixed to some degree, making it easy to learn 
them. On the other hand, images with many varia-
tions, such as those of animals taken from different 
viewpoints and distances, are difficult to learn.

Also, the larger the image size, the more details 
need to be synthesized, and the more processing time 
it takes, making learning more difficult. I think there 
will be various issues that will emerge as we expand 
the scope of applications in the future. As expected, 
the difficulties inherent with ill-posed problems 
remain.

Developing a computer that understands the 
3D world

—What will this technology enable in the future?

Our mission as researchers is to “develop comput-
ers that are highly compatible with humans.” For this 
reason, it is essential to understand the 3D world; but 
the cost of data collection is likely to be a barrier to 
applying the technology to a wider range of fields. In 
that regard, I think this research is beneficial because 
it is excellent in terms of data collection. In the future, 
we will be able to create robots that can move freely 
around the 3D world, build 3D worlds without dis-
sonance in virtual space, and develop tools to create 
3D objects in virtual space.

Another advantage is that optimized models can be 
built as long as we can collect 2D images. For exam-
ple, if you gather photos taken by a well-known pho-
tographer, you can build a model that learns the 
bokeh effects unique to that photographer. Currently, 
communication using images such as through social 
media has become very common. If we can easily add 
the bokeh effects, it may become easier to create 
more attractive photos. I think this is particularly use-
ful in the three areas of robotics, content generation, 
and entertainment.

—What are the future prospects and initiatives on 
collaborations with other fields?

Since it is basic research, it is difficult to set spe-
cific targets for practical use at this time; but we plan 
to continue to improve performance by increasing 
accuracy and resolution. We have focused on the 
camera aperture, but it is interesting to note that add-
ing physical constraints enables creating a more reli-
able computer.

One of the key technical areas of the Innovative 
Optical and Wireless Network (IOWN) initiative is 
“Digital Twin Computing,” where computations are 
performed using digital twins of various industries, 
things, and humans. In order to merge the real world 
with the virtual world, it is necessary for computers 
to properly understand the real world, so I believe that 
this technology can also contribute to these areas.

I feel that the importance of integrating media gen-
eration technology with various fields is increasing as 
the technology matures. Currently, we are conducting 
research that combines computer science, such as 
computer vision and machine learning, with physics, 
such as optics. Going forward, we will continue to 



Rising Researchers

9NTT Technical Review Vol. 20 No. 7 July 2022

focus our efforts on collaborations with people from 
other fields, such as computer graphics for image 
creation and photonics for photography, as well as on 
cross-discipline implementation.

—Could you give a message to young researchers 
and future business partners?

NTT laboratories are conducting extensive research 
ranging from basic research to applications, and in 
particular, our laboratory, NTT Communication Sci-
ence Laboratories, is conducting research on how to 
improve communication between humans and 
between humans and machines. In the past, we have 
often been limited to basic research, but recently, the 
distance between basic research and applied research 
has been narrowing, and I feel that the opportunities 
for engaging in research while considering real-world 
problems are increasing. We are also seeing more and 
more cases of the technology presented at interna-
tional conferences being embedded in applications 
and deployed as a service on the web. I think it is 
interesting to see the output, for example, by creating 
a solution that actually converts voice, rather than 
stopping at tinkering with formulas.

There are limitations to doing research individually. 
Our laboratory is also actively collaborating with 
universities and accepting interns, so I hope that we 
can continue to actively collaborate particularly with 
students and young researchers who want to create 
something or change something.

As for business partners, since we have been able to 

create interesting ideas and technologies from the 
research side, we need their help in linking these 
ideas and technologies to services. On the other hand, 
we can get ideas for research by receiving feedback 
from people in the service field who have profound 
knowledge of real problems. So, going forward, we 
hope to continue to actively collaborate also with 
business partners.
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1.   Introduction

Social activities that enable remote participation 
have become widespread as reflected by the adoption 
of remote work as a countermeasure against the 
COVID-19 pandemic. To support these activities, 
there are growing expectations for the development 
of next-generation communication networks envi-
sioned under NTT’s Innovative Optical and Wireless 
Network (IOWN) and the 6th-generation mobile 
communication system (6G) featuring, for example, 
advanced and high-capacity backbone optical trans-
mission networks and extended coverage of wireless 
communications. Research and development (R&D) 
at NTT Network Innovation Laboratories aims to 
establish communication technologies that can 
exploit the physical waves of diverse frequency bands 
including light, radio, and sound waves and enable 
long-distance, high-speed, and high-capacity trans-
mission in a wide range of areas including communi-
cation media such as optical fiber, water, and air. 
Researchers at NTT Network Innovation Laborato-

ries understand that their mission is to pioneer a new 
communications paradigm by achieving the above 
research targets using scientific knowledge based on 
physics and mathematics such as that related to elec-
tromagnetic wave propagation and light propagation, 
digital signal processing, and media processing. 

As shown in Fig. 1, the research scope of NTT Net-
work Innovation Laboratories covers a wide range of 
areas. Researchers usually dealt with optical fiber and 
radio wave propagation, but today, the research scope 
has broadened as far as low-frequency bands, such as 
sound waves, and research targets have extended 
beyond air and enclosed spaces, such as optical fiber, 
to include all types of spaces and media from water to 
outer space as communication media. Research in 
underwater acoustic communication targeting water, 
for example, aims to achieve information transfers 
beyond the Mbit/s class capable of video transmis-
sion. To achieve extreme-high-capacity wireless 
transmission toward 6G [1], NTT Network Innova-
tion Laboratories is also researching and developing 
new areas such as orbital angular momentum (OAM) 
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multiplexing transmission wireless communications, 
free space optics (FSO) assuming air and outer space 
as media, and quantum cryptography communica-
tions for achieving the ultimate in security. 

At NTT Network Innovation Laboratories, we are 
also engaged in specific R&D toward the develop-
ment of the All-Photonics Network (APN) [2], which 
is one of the three main pillars of NTT’s IOWN initia-
tive. This includes the R&D of elemental technolo-
gies for achieving a next-generation optical commu-
nication network that can easily provide high-capaci-
ty optical communication paths to a variety of cus-
tomers as expected of the APN. Specific projects 
include the development of a low-power digital signal 
processor (DSP) for achieving 400-Gbit/s-class sig-
nal transmission through digital-coherent optical 
transmission technology, demonstration of bulk 
extension of the optical amplification bandwidth 
through wideband optical parametric amplifiers, and 
the development of technology for automatically set-
ting high-capacity optical communication paths.

The remainder of this article introduces a number 
of initiatives in cutting-edge technologies undertaken 
by NTT Network Innovation Laboratories toward 
IOWN/6G divided into frontier communication tech-
nologies, wave propagation technologies, and inno-
vative transport technologies.

2.   Frontier communication technologies

An outline of frontier communication technologies 
is shown in Fig. 2. With the aim of achieving cyber-
physical systems such as smart cities, we are working 
on optical-path automatic optimization/control tech-
nology for connecting computing resources distrib-
uted over a wide area on the IOWN APN and high-
speed remote data-transfer technology for achieving 
high-capacity, low-latency data transfers. These 
technologies will lead to the establishment of an opti-
cal network platform for ultra-wide-area distributed 
computing. We are also working on natural media 
processing technology to transmit information on the 
configuration of physical space in real time with low 
latency toward ultra-high-presence communication 
including video and on multimodal wireless environ-
ment-comprehension/prediction technologies to pre-
dict, set, control, and manage communication quality 
and the environment through sensing and artificial 
intelligence (AI). We are also taking up the challenge 
of establishing secure-transmission technology for 
envisioning the use of quantum computers.

2.1    Optical network platform for ultra-wide-area 
distributed computing

At NTT Network Innovation Laboratories, we are 
developing technology for dynamically connecting 

Fig. 1.   Research scope of NTT Network Innovation Laboratories toward IOWN/6G.
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computing resources, such as accelerators and mem-
ory devices, distributed over an ultra-wide area on the 
APN through the optimal design and control of trans-
mission modes and optical paths on the basis of opti-
cal characteristics. This technology will enable the 
construction of optical paths that extract maximum 
optical transmission performance. Our aim is the 
establishment of an optical network platform toward 
ultra-wide-area distributed computing essential to the 
development of smart cities through high-speed 
remote data-transfer technology, which will make 
exclusive use of bandwidth on ultra-long-distance 
optical paths and synchronize remote memory devic-
es with extreme low latency.

2.2   Natural media processing technology
We are developing spatial reconstruction technolo-

gy with extreme low latency with a view to ultra-
high-presence communication. This will be accom-
plished by accommodating information on the con-
figuration of physical space in APN optical paths as a 
time series of high-speed digital signals, enhancing 
high-speed media transfers with low-latency features 
to enable long-distance transmissions with extreme 
low latency, and using lightweight machine learning. 
Looking to the future, we aim to establish cross-layer 
AI monitoring technology to collect the input/output 
of people, things, and the environment across multi-
ple layers and make inferences from those data. Our 
goal with this technology is to enable automatic opti-
mization even during system operation through state 

monitoring and detection of anomalies and their 
causes. 

2.3    Multimodal wireless environment-compre-
hension/prediction technologies

To satisfy a variety of requests for network services 
to be provided by IOWN, we are developing tech-
nologies for using diverse types of physical space 
information obtained using cameras and sensors for 
predicting communications quality several seconds 
into the future and for maintaining high-quality com-
munications at all times through optimal communica-
tion means. Our goal is to establish environment-
comprehension technology that uses the relationship 
between physical space information and wireless 
communication system information to extract the 
former, such as location information, from the latter. 

2.4    Quantum cryptography communications 
technology

NTT Network Innovation Laboratories is exploring 
new technology areas based on optical technologies 
toward long-term innovative contributions to the 
IOWN initiative. Specifically, we aim to use optical-
fiber transmission technology and communication 
protocol technology to achieve a quantum cryptogra-
phy communications system that overcomes the limi-
tations in distance and communication speeds in 
conventional quantum key distribution. We will also 
endeavor to establish security and transmission tech-
nologies for the age of quantum computers.

Fig. 2.   Outline of frontier communication technologies.
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3.   Wave propagation technologies

Wireless communications in the IOWN/6G era is 
expected to have a variety of features. These include 
extreme coverage extension that includes coverage in 
the sea and outer space in addition to terrestrial com-
munications, high-speed/high-capacity transmission 
irrespective of the points being connected, and flexi-
ble wireless space formation that confines radio 
waves to the targeted area, all with the aim of creating 
new value in wireless communications. At NTT Net-
work Innovation Laboratories, we are working on 
four key technologies toward the creation of wireless 
value as a social platform for the IOWN/6G era: (1) 
underwater acoustic communication technology, (2) 
ultra-wide-area, high-speed network configuration 
technology, (3) terabit-class wireless transmission 
technology, and (4) wave adaptation and control tech-
nology (Fig. 3).

3.1    Underwater acoustic communication technol-
ogy

Wireless communication technology based on 
radio waves capable of high-speed, stable, and long-
distance communication has not been established for 
underwater applications; as a result, unmanned 
probes and undersea heavy equipment used for 
resource development on the ocean floor or for port 
construction typically connect with a support vessel 
on the surface of the sea using a communication cable 
100 m or longer to achieve remote operations [3]. 
This state of affairs has been a major issue from the 

viewpoint of work efficiency. We aim to establish 
Mbit/s-class underwater acoustic communication 
technology to enable wireless remote control of 
underwater equipment and devices. This technology 
will include spatio-temporal equalization technology 
to compensate for significant waveform distortion of 
acoustic waves and spectrum-division transmission 
technology to achieve high speeds through broad-
band transmission.

3.2    Ultra-wide-area, high-speed network configu-
ration technology

Areas in which people do not live, such as in highly 
rural and mountainous areas and the open sea, may 
not have a terrestrial wireless communication infra-
structure for economic reasons. Our aim is to achieve 
ultra-wide-area, high-speed networks in areas where 
no wireless communication infrastructure has been 
set up. To this end, we are pursuing satellite Internet 
of Things (IoT) platform technology [4] to enable the 
collection of sensor data on a global scale and FSO 
platform technology to enable 100-Gbit/s-class high-
speed communications in areas such as the open sea. 

3.3    Terabit-class wireless transmission technolo-
gy

Terabit-class wireless transmission technology is 
considered necessary for the fronthaul and backhaul 
in the IOWN/6G era [5]. We aim to further increase 
transmission bandwidth and the amount of spatial 
multiplexing essential to terabit-class wireless trans-
mission through digital signal processing technologies. 

Fig. 3.   R&D related to wave propagation technology.
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These include OAM and line-of-sight multi-input 
multi-output (MIMO) schemes for achieving spatial 
multiplexing and high-frequency-band Butler circuit 
configuration technology for increasing the band-
width of OAM multiplexed transmission. 

3.4   Wave adaptation and control technology
In wireless communications, radio waves tend to 

spread in all directions even outside the area targeted 
for communications. This leakage of radio signals 
outside the intended area results in a drop in confi-
dentiality, increase in interference, and power loss as 
universal problems in wireless communications. We 
aim to establish the ultimate in wireless communica-
tions by preventing the leakage of radio waves using 
wave-control techniques. These will include termi-
nal-coordinated, user-centric radio access network 
technology that links not only base stations but also 
terminals to form wireless space in an adaptive man-
ner and multi-shape wave-control technology to fully 
control radio-wave trajectories. 

4.   Innovative transport technologies

NTT Network Innovation Laboratories is pursuing 
innovative transport technologies for achieving 
extreme-high-capacity optical paths as a platform for 
IOWN. In particular, we are researching and develop-
ing digital-coherent optical transmission technology 
including the development of a low-power, 1-Tbit/s-
class DSP for optical communications as well as 
opto-electronic integration technology to link light 
and electricity and analog and digital circuits. We are 
also working on innovative Layer 1 networking tech-
nology to generate new value for users and operators 
and pioneering elemental technologies toward a  
dramatically new user experience (UX) in the APN. 
With the aim of efficiently accommodating massive 
amounts of traffic in the future, we have taken on the 
development of innovative extreme-high-capacity 
transmission technology with a 10-Pbit/s-class 
throughput per node, which is enabled by scalable 
optical transport platform technology driving the 
development of optical signal processing technology.

4.1    FLEX digital-coherent optical transmission 
platform technology

NTT Network Innovation Laboratories aims to 
establish FLEX digital-coherent optical transmission 
platform technology as an elemental technology for 
economically achieving IOWN (Fig. 4). This tech-
nology will achieve long-distance and low-power 

high-capacity optical transmission of the 1-Tbit/s 
class essential to the construction of the APN. In 
addition to conventional long-distance transmission 
oriented to carriers, this technology is also applicable 
to short-range transmission such as datacenter inter-
connects. For rapidly expanding application areas, it 
aims to achieve optimal optical paths by using a digi-
tal signal processing function to make flexible chang-
es to the transmission scheme, type of compensation 
processing, etc. in addition to high-accuracy trans-
mission path monitoring.

4.2    Scalable optical transport platform technol-
ogy

A petabit-class optical network will be needed to 
accommodate the massive volume of communica-
tions traffic that will be generated by the expansion of 
cloud services and further penetration of smart-
phones. As part of our efforts to meet this need, we 
have demonstrated bulk extension of the optical 
amplification bandwidth through wideband optical 
parametric amplification repeaters [6] and undertak-
en the development of large-capacity spatial-multi-
plexing transmission technology using core multi-
plexing and mode multiplexing [7]. Our aim is to 
pioneer innovative extreme-high-capacity transmis-
sion technology and optical signal processing tech-
nology to make this possible and establish scalable 
optical network platform technology of the 1-Pbit/s 
class per link.

4.3   Extreme Layer 1 networking technology
We aim to generate value for users and operators 

through Layer 1 networking and contribute to the 
implementation of the APN by demonstrating spe-
cific use cases together with collaborators. To this 
end, we are developing elemental technology for 
dramatically enhancing the UX through instanta-
neous creation of a Layer 1 communication path to 
any location and elemental technology for revolution-
izing operations by enabling network configuration 
changes to be made at will through Layer 1 switching 
without interrupting communications. Through these 
technical developments, we are exploring a variety of 
use cases such as demonstrating that remote e-sports 
matches can be conducted fairly even at the profes-
sional level by using Layer 1 communication path 
delay/adjustment technology [8].

5.   Conclusion

This article outlined cutting-edge technologies now 
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being pursued by NTT Network Innovation Labora-
tories toward IOWN/6G. Going forward, our goal is 
to achieve early establishment of various elemental 
technologies toward the deployment of IOWN/6G 
scheduled for 2030 by collaborating with business 
partners and specialists in a variety of industrial 
fields.
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Fig. 4.   Digital-coherent optical transmission platform technology for rollout in APN.
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1.   Introduction

Since the dawn of the Internet, Internet traffic has 
continued to grow exponentially in Japan and around 
the world as various services emerge and spread. To 
support this growth in traffic, optical-fiber transmis-
sion technology has continued to evolve generation-
ally through the introduction of new technologies 
such as wavelength division multiplexing and opti-
cal-amplification relay. The latest generation of these 
technologies is digital coherent optical transmission 
technology, which captures all the physical quantities 
of light (i.e., polarization, amplitude, and phase) as 
digital data and compensates for distortions in opti-
cal-fiber transmission lines and optoelectronic devic-
es through advanced signal processing [1]. 

To implement the Innovative Optical and Wireless 
Network (IOWN), which aims to integrate the real 
and virtual worlds into a rich society that embraces 
diversity, optical transmission technology must also 
evolve to provide even higher capacity, lower power 
consumption, and higher functionality. The latest 
trends and future development of digital coherent 

optical transmission technology are introduced in 
terms of high-speed and high-capacity transmission, 
compact and low-power devices, and software-based 
autonomous control.

2.   Initiatives concerning further increase in 
speed and capacity

The expansion of communications within and 
between datacenters and the penetration of applica-
tions such as on-demand video streaming and cloud 
computing have further increased the demand for 
optical transmission with higher capacity. Regarding 
high-capacity networks, capacity per wavelength 
channel must be increased before the network can be 
built economically. Evolution of optical transmission 
capacity per wavelength channel in the cases of 
offline experiments and in commercial systems is 
shown in Fig. 1(a). High-capacity transmission 
exceeding 1 Tbit/s per wavelength has been experi-
mentally demonstrated. In these demonstrations, 
modulation speed significantly increased and modula-
tion schemes with higher modulation levels/high-order 
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modulated signals were introduced. The modulation 
speed in the first generation of digital coherent opti-
cal transmission (100 Gbit/s per wavelength) was 32 
Gbaud, but it has increased to 100 Gbaud and higher 
[2, 3]. This increased modulation speed was a result 
of increasing the speed of analog components such as 
analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs), optical modulators, driv-
ers, photodiodes, and transimpedance amplifiers 
[4–6]. Probabilistic constellation shaping (PCS) [7], 
which can achieve a capacity close to the Shannon 
limit, has attracted attention and is used together with 
quadrature amplitude modulation (QAM) composed 
of 64 or more constellation points.

Signal distortion caused by analog components in 
the transmitter and receiver is a major issue in regard 
to increasing the capacity of optical transmission 
systems. As the symbol rate increases and the multi-
modulation level becomes higher, signal distortions 
are caused by frequency-bandwidth limitation and 
crosstalk in the analog components and the electrical 
wiring in printed circuit boards and other compo-
nents. These distortions are compensated for by set-
ting optimal filter coefficients, which are estimated 
by calibration, for each digital equalization filter (i.e., 
one for transmission and one for reception). NTT 

Network Innovation Laboratories is developing tech-
nology to compensate for such waveform distortion 
with high accuracy. There are two problems with 
digital estimation: (i) increasing the peak-to-average 
power ratio and lowering signal quality [8] and (ii) 
tracking the time variation of waveform distortion 
due to operating temperature, age deterioration, and 
control dither. To ensure sufficient transmission per-
formance, it is important to divide the roles of sender-
side pre-equalization and receiver-side equalization. 
By applying our research and development (R&D) 
technologies to address these issues, we have com-
mercialized an application-specific integrated circuit 
that achieves digital coherent transmission at a rate of 
up to 600 Gbit/s [9]. 

Regarding the development of a next-generation 
optical transmission system, NTT Network Innova-
tion Laboratories has further increased modulation 
speed to 168 Gbaud and experimentally demonstrat-
ed transmissions of a 1-Tbit/s light signal over 3840 
km and of 1.2-Tbit/s light signal over 1280 km [2]. 
We achieved these high modulation speeds by using 
two analog multiplexer (AMUX) front-end integrated 
modules [5], which respectively use polarization-
multiplexed PCS-16QAM and 36QAM modulation 
schemes. This light signal is wavelength-division 

Fig. 1.   Progress of transmission capacity per wavelength and examples of transmission experiments exceeding 1 Tbit/s.
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multiplexed (WDM) with optical frequency spacing 
of 175 GHz. The spectrum of the WDM signal before 
and after transmission is shown in Fig. 1(b). The 
transmission line consists of pure-silica-core fiber 
with an 80-km optical-amplification relay section and 
uses both backward-pumping distributed Raman 
amplification and erbium-doped-fiber amplification. 
Each amplification achieves spectral-utilization effi-
ciencies of 5.71 and 6.85 bit/s/Hz, respectively. Mea-
sured dependence of normal generalized mutual 
information (NGMI) on transmission distance for 
1-Tbit/s and 1.2-Tbit/s signals is shown in Fig. 1(c). 
As shown in the figure, NGMI values were above 
0.857, namely, error-correction threshold for 21% 
redundancy level, for the 1-Tbit/s signal after 3840-
km transmission and for the 1.2-Tbit/s signal after 
1280-km transmission. This result indicates that 
error-free transmission is possible. Note that in this 
experimental demonstration, we only used the 
C-band, but we are conducting R&D with the aim of 
expanding the bandwidth to the L- and S-bands.

3.   Initiatives concerning miniaturization and 
power reduction

To handle ever-increasing communication traffic, 
optical networks must be able to continuously 
increase capacity. However, the installation space and 
power supply of optical transmission equipment are 
limited; accordingly, achieving higher capacity 
necessitates smaller, lower-power optical interfaces. 
Since miniaturization of devices lowers their heat-
dissipation performance, low power consumption as 
well as miniaturization and high-density mounting of 
the devices that configure the optical interface are key 
factors in achieving miniaturization. It is therefore 
essential to reduce the power consumption of a digital 
signal processor (DSP) because it accounts for a large 
portion of the power consumption of optical inter-
faces.

Digital coherent optical transmission technology 
was first implemented in long-distance transmission 
systems configuring the backbone networks of tele-
communications carriers. As the technology has 
matured, miniaturization, power reduction, and cost 
reduction have progressed, and the technology has 
become more widely used in short-distance transmis-
sion systems such as metro networks and datacenter-
interconnect (DCI) networks. This technology is 
expected to be applied to access networks and net-
works within datacenters in the future. Low-power 
technologies will also become increasingly important 

in regard to creating future massively multi-parallel, 
high-capacity optical transmission systems using 
multicore fibers with spatial multiplexing.

The progress in miniaturization and power reduc-
tion of coherent transceivers is shown in Fig. 2. The 
DSPs developed and practically applied at NTT labo-
ratories, i.e., installed in a coherent transceiver, are 
shown below the horizontal axis. Coherent transceiv-
ers are mainly used for metro and DCI networks, and 
their miniaturization and power-consumption reduc-
tion are rapidly progressing in a similar manner to 
low-power DSPs. Currently, 400-Gbit/s pluggable 
transceivers, such as the C form-factor pluggable 2 
digital coherent optics (CFP2-DCO) and quad small 
form-factor pluggable double density (QSFP-DD), 
are in practical use. 

DSPs for optical communication are required to 
operate at extremely high speeds and low power con-
sumption, so the state-of-the-art complementary 
metal-oxide semiconductor (CMOS) process is 
always applied to reduce power consumption. How-
ever, this power consumption cannot be reduced suf-
ficiently by improving the CMOS process. Accord-
ingly, application of new signal-processing algo-
rithms, selection of functions in accordance with 
application [10], and optimization of performance 
have progressed in regard to functions such as reduc-
tion in the digital sampling rate, wavelength-disper-
sion compensation, adaptive equalization, and for-
ward-error correction (FEC). Although the applica-
tion of state-of-the-art CMOS processes and innova-
tions in signal-processing algorithms have signifi-
cantly reduced the power consumption of digital cir-
cuits, the power consumption of analog circuits, such 
as DACs and ADCs, has not yet been significantly 
reduced, partly due to the effect of the higher trans-
mission and reception signal speeds of those circuits. 
For that reason, the power consumption of analog 
circuits accounts for a larger percentage of the total 
power consumption in each generation of DSP, and 
one of the major challenges for further power reduc-
tion is to reduce the power consumption of analog 
circuits.

With the aim of achieving further miniaturization 
and lower power consumption, co-package mounting 
technology, in which a DSP and silicon-photonics-
based optical transmitter-receiver device called 
coherent optical subassembly (COSA) [11] are 
mounted in a single package, has been researched and 
developed. High-density mounting of the DSP and 
COSA enables significant miniaturization, while 
shortening the high-speed analog electrical wiring 
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between the DSP and COSA minimizes losses and 
keeps signal drive power low. To implement the 
future IOWN-based All-Photonics Network, we are 
conducting R&D aimed at drastically reducing power 
consumption by offloading functions that are cur-
rently executed by digital signal processing to optical 
processing. NTT Network Innovation Laboratories 
has demonstrated a significant improvement in optical 
signal-to-noise ratio (SNR) tolerance for 800-Gbit/s- 
class optical transmission by compensating for sig-
nal-waveform distortion caused by the bandwidth 
characteristics of the optical transmitter and receiver 
in conjunction with digital signal processing and 
optical processing [12]. This performance improve-
ment makes it possible to simplify digital signal pro-
cessing, thus reduce the power consumption of the 
DSP.

4.   Initiatives concerning automated control 
using software

Software-defined wide-area network (SD-WAN) 
technology, which separates the physical network and 
device hardware from their control planes and man-
ages them using software, has been commercially 

introduced in the market for forwarding equipment 
such as routers, and a system that connects remote-
user sites and enables centralized control using soft-
ware is now in place. In the era of full-fledged IOWN, 
user terminals equipped with various transmission 
functions, such as routers with coherent modules and 
white-box switches, will become increasingly popu-
lar. To connect these terminals while attaining low 
latency and low power consumption by reducing the 
number of optical-electrical conversions, using direct 
connection via a carrier network is being considered 
[13], and it is expected that software-based automat-
ic-configuration technology for optical transmission 
networks will be implemented. 

However, for optical transmission below layer 1, 
complex physical factors such as wavelength depen-
dence of optical amplifiers and nonlinear optical 
effects in fiber have been considered a barrier to auto-
mated control using software as in the case of SD-
WANs. To dynamically connect arbitrary user ends, a 
new method for quickly estimating transmission-path 
characteristics that determine transmission distance 
and capacity of optical transmission networks and 
real-time measurement of transmission quality using 
receivers are required.

Fig. 2.   Miniaturization and power reduction of coherent transceivers.
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The Open Optical & Packet Transport project group 
of the Telecom Infra Project [14], which aims to 
define open technologies, architectures, and inter-
faces in optical and Internet protocol networking, is 
developing GNPy [15], an open-transmission-path 
design tool based on transmission-quality estimation 
using Gaussian-noise models, and a transponder 
abstraction interface (TAI) [16], which separates the 
hardware and software of a transponder. NTT Net-
work Innovation Laboratories is contributing to open-
ness in these areas and aims to implement a technol-
ogy that automatically optimizes the transmission 
mode of optical paths between different vendors and 
devices and establishes optical-path connections in a 
short time by using open interfaces and tools such as 
a TAI and GNPy (Fig. 3).

Manual work has traditionally been required to 
connect such optical paths, and the process from ser-
vice order to optical-path connection took a long 
time, ranging from several days to several weeks. As 
schemes for digital coherent optical transmission 
become more sophisticated and transmission modes 
become more diverse, the design and coordination of 
optical paths are becoming more complex. Our devel-
oped technology calculates the optimal transmission 

mode (modulation scheme and FEC type)—even in 
an environment in which multi-vendor transmission 
equipment has been deployed—by collecting such 
information via a TAI and estimating transmission-
path conditions and transmission quality by means of 
GNPy and other methods. Moreover, by setting that 
information to the transmitter and receiver DSPs, an 
optical-path connection is established in a few min-
utes [17]. Specifically, these procedures/processes 
are carried out with the following sequence of steps.

(1)  The basic information and functions pos-
sessed by the transmitter and receiver DSPs 
(configurable modulation scheme, FEC type, 
etc.) are collected via the TAI, and the optical-
path connection is established after setting a 
transmission mode that can be connected to 
both the transmitter and receiver.

(2)  Via step (1), parameters, such as bit error rate 
and wavelength dispersion, are collected from 
the receiver DSP, and the quality of the trans-
mission channel is estimated. From these 
parameters, the optimal transmission mode is 
calculated—with appropriate margin set-
tings—on the basis of geometric SNR esti-
mated by GNPy.

Fig. 3.   Automatic optimization of optical-path transmission mode between different vendors and devices.
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(3)  On the basis of the calculated transmission 
mode, parameters such as modulation method 
and FEC type for the transmitter and receiver 
DSPs are set, and an optical path between 
transmission devices of different vendors is 
opened in a few minutes.

5.   Concluding remarks

To implement optical transmission technology that 
supports IOWN, NTT Network Innovation Laborato-
ries will research and develop digital coherent optical 
transmission technology from the viewpoints of high-
speed and large-capacity transmission, low-power 
devices, and software-based autonomous control.
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1.   Introduction

The fifth-generation mobile communications (5G) 
system was introduced commercially in Japan in 
FY2020. The 5G system is forecast to evolve into an 
infrastructure for the Internet of things society in 
which all things, including autonomous driving, con-
nect to highly reliable, low-latency, and large-scale 
networks. With the acceleration of the evolution of 
network infrastructure technologies through the 
development of the Innovative Optical and Wireless 
Network (IOWN) All-Photonics Network (APN), 
next-generation Beyond 5G technologies following 
the 5G system are expected to be widely used as net-
work service technologies in the 2030s. The contin-
ued evolution of the network infrastructure is consid-
ered essential for flexibly supporting changes in the 
global industrial structure and in lifestyles brought 
about by the COVID-19 pandemic.

A high-capacity network infrastructure that sup-
ports the evolution of broadband services requires the 
continued evolution of high-capacity optical trans-

port networks. NTT, as shown in Fig. 1, has been 
pursuing the continued development of high-capacity 
optical transport systems and networks based on sin-
gle-mode fiber (SMF) cables, which were introduced 
in the 1980s. The system capacity per fiber core, 
along with the continuous technological innovations 
of various optical communication systems, has 
evolved at a rate of nearly 1.4 times per annum (1000 
times in 20 years), wherein the system capacity is 
expected to exceed 1 Pbit/s by the 2030s. Digital 
coherent optical communication technology using 
digital signal processing has been commercialized as 
a transmission technology that takes advantage of the 
coherent nature of lightwave and maximizes the 
transmission characteristics of SMF. In 2019, an opti-
cal transport network with a capacity of 16 Tbit/s per 
fiber core was commercialized [1]. However, it has 
become clear that the physical capacity limit (capac-
ity crunch) of SMF, a transmission medium that has 
supported long-distance optical transport network 
infrastructure, exists near the 100-Tbit/s capacity, 
which is approximately 10 times that of the current 

Research and Development of 
Scalable Optical Transport 
Technologies
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This article discusses the current state and prospects of scalable optical transport technologies that can 
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capacity, pointing to the need for innovative technol-
ogies to achieve continued growth in system capacity.

This article describes two approaches to overcome 
the capacity crunch toward the IOWN APN through 
scalable optical transport technologies. The first is a 
broadband optical parametric amplification repeater 
technology that economically increases the SMF 
capacity by expanding to more than twice the optical 
signal bandwidth of optical amplification repeaters 
using conventional SMF. The second is a space divi-
sion multiplexing (SDM) optical communication 
technology that creates multiple independent parallel 
communication channels multiplexed by introducing 
new degrees of freedom, such as multi-cores and 
multi-modes, in a single strand of optical fiber to 
achieve high-capacity communication in the Pbit/s-
class capacity beyond the limit of current SMF. The 
following sections describe the recent progress in the 
individual technology elements.

2.   Broadband optical parametric amplification 
repeater technology

For the current optical fiber transmission systems, 
large-capacity transmission has been achieved by 
multiplexing optical signals of approximately 100 
wavelengths into the optical wavelength band of 
around 4 THz, which is the amplification bandwidth 
of an erbium-doped optical fiber amplifier (EDFA), 
and by expanding the transmission capacity per 

wavelength of an optical signal using digital coherent 
technology*1. For the APN, which is part of the 
IOWN initiative proposed by NTT, we are aiming to 
build a flexible optical network that uses abundant 
wavelength resources. Along with increasing conven-
tional capacity per wavelength, we are also aiming to 
expand the available wavelength resources (optical 
wavelength band). NTT has been pursuing research 
and development (R&D) focusing on optical para-
metric amplification*2 using a periodically poled 
lithium niobate (PPLN)*3 waveguide as a wide-band 
and low-distortion optical amplification technology 

Fig. 1.   Evolution of ultra-large-capacity optical communication system technologies.
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*1 Digital coherent technology: A transmission method that com-
bines massive digital signal processing and coherent detection. 
Coherent detection enables a high-sensitivity receiver for the am-
plitude and phase modulated optical signals by introducing inter-
ference between the light source placed on the receiving side and 
received light signal. In addition to increasing spectral efficiency 
through polarization multiplexing and modulation schemes using 
amplitude and phase of optical signals, digital coherent technolo-
gy can achieve higher receiver sensitivity through high-precision 
distortion compensation of optical signals using digital signal 
processing in combination with the coherent detection.

*2 Optical parametric amplification: Light at a specific wavelength 
is amplified through interaction between light of different wave-
lengths using the nonlinear optical effects generated in the mate-
rial. High-nonlinear fibers and lithium niobate (LiNbO3) crystal 
are known as nonlinear media. 

*3 PPLN: An artificial spontaneous-polarization crystal in which the 
directions of positive and negative charges in the crystal are forc-
ibly inverted at a fixed period in a nonlinear medium, e.g., 
LiNbO3. PPLN enables a nonlinear optical effect that is signifi-
cantly higher than that of the original LiNbO3 crystal.
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[2]. Optical parametric amplification with a PPLN 
waveguide can only amplify a single polarized signal 
and produce phase conjugated light that is unneces-
sary for normal optical amplification. These factors, 
therefore, posed further challenges in widening the 
amplification bandwidth and in achieving stable 
response for frequent insertion and removal of optical 
wavelengths in response to traffic demand in the 
future APN with the optical amplification of polariza-
tion-multiplexed optical signals currently used in 
digital coherent systems.

Therefore, we proposed an amplifier configuration 
using multiple modular PPLN waveguides (PPLN 
modules) to achieve stable amplification of polariza-
tion-multiplexed optical signals and the amplification 
bandwidth of 10.25 THz with a gain of at least 15 dB. 
Using the ultra-high-speed signal-generation tech-
nology [3] with a symbol rate of over 100 Gbaud and 
using polarized multiplexed digital coherent signals 
of 800 Gbit/s per wavelength as verification signals, 
we confirmed low-distortion signal amplification in 
the gain-saturation region for both single-wavelength 
and wavelength-multiplexed signal inputs. We also 
confirmed the high-speed response to input signal 

switching at 1 wavelength and 41 wavelengths 
through emulation of the high-frequency variation in 
the number of wavelengths expected for the utiliza-
tion of wavelength resources in the APN. We intro-
duced the optical parametric amplifier as a wideband 
inline repeater and demonstrated that the optical sig-
nal bandwidth can be expanded to more than 10.25 
THz, more than 2.5 times that of conventional tech-
nology, using wavelength-multiplexed signals of 800 
Gbit/s per wavelength [4].

Going forward, we will pursue research on long-
distance transmission performance at 100 Tbit/s, 
which is close to the performance limit of current 
optical fiber communication systems, as shown in 
Fig. 2, by combining broadband optical parametric 
amplification repeater technology and ultra-high-
speed signal-generation technology with high symbol 
rate.

3.   SDM optical communication technology using 
mode multiplexing

SDM optical communication technologies are 
expected to overcome the SMF capacity crunch and 

Fig. 2.    Expansion of existing SMF transmission characteristics through broadband optical parametric amplification repeater 
technology and electric signal bandwidth expansion technology. All plots are experimental results with the channel 
rate ≥ 800 Gbit/s and optical amplification bandwidth > 4 THz.
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achieve a larger capacity. In consideration of the 
manufacturability of SDM optical fiber cable, which 
serves as the novel transmission medium, should be 
equivalent to the standard cladding diameter (125 
µm) of the currently widely used SMF. When using 
multiple cores and propagation modes to transmit 
signals using SDM optical fiber with the standard 
cladding diameter, especially in areas with more than 
four space multiplexes, strong mode couplings 
between each spatial mode occur, and cross talk and 
spatial mode dispersion (SMD) lead to significant 
distortion of the signal waveform. In the current digi-
tal coherent optical transmission system using SMF, 
polarization multiplexing is applied to transmit inde-
pendent signals using two different polarizations. The 
dynamic waveform distortion caused by the combi-
nation of polarization rotation in the transmission 
path and the delay difference between the polarized 
waves (polarization mode dispersion) is adaptively 
compensated by 2 × 2 multiple-input and multiple-
output (MIMO) signal processing*4 implemented in 
the digital signal processing circuitry in the receiver 
to achieve high-quality transmission. However, if this 
is simply expanded and applied to the mode-multi-
plexed SDM transmission system, the size of the 
MIMO signal processing circuit increases propor-
tionately to the square of the spatial multiplex num-

ber. Furthermore, the number of digital filter taps 
required for MIMO signal processing must be 
expanded accordingly since the SMD inherent in 
multi-mode fiber is 10 times larger than polarization 
mode dispersion and accumulates proportionally to 
the square root of the transmission distance in multi-
mode fibers with large mode coupling.

To overcome the above technical challenges, we are 
investigating high-capacity, long-distance optical 
transport technologies that actively use and control 
the spatial modes (Fig. 3). Specifically, we are aiming 
to establish: (1) spatial mode-control optical-fiber 
cabling technology with a standard cladding diameter 
of 125 µm suitable for fiber-optic cable installation 
environments and mass production, (2) mode-multi-
plexing MIMO processing configuration technology 
that takes into account the dynamic optical character-
istics attributed to the cable installation properties, 
and (3) the fundamental technology that organically 

*4 MIMO signal processing: A technology that transmits and re-
ceives one or more signals on a transmission path with multiple 
signal propagation paths (propagation modes and cores) using the 
same carrier frequency (wavelength). It is a widely used technol-
ogy in radio communications. In optical communications, MIMO 
with two inputs and two outputs (2 × 2) using two orthogonal po-
larization modes within SMF has been commercialized using 
digital coherent technology as a polarization multiplexing tech-
nology.

Fig. 3.    Overcoming the capacity crunch using mode-multiplexed MIMO signal processing and standard cladding diameter 
mode-multiplexed fiber mounting technology (spatial multiplexing = 1 is the current SMF transmission system 
capacity).
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links the spatial mode-multiplexing optical amplifi-
cation repeater technology integrating (1) and (2). As 
an example of the results of recent studies on mode-
multiplexing MIMO processing configuration tech-
nology [5], in the mode-multiplexing optical com-
munications using six independent spatial modes, we 
have successfully demonstrated long-distance trans-
mission over 6000 km by proposing an optical ampli-
fication repeater system and MIMO signal processing 
system that have strong compensation characteristics 
against transmission-loss and propagation-delay dif-
ferences between different spatial modes. We have 
also successfully demonstrated the effectiveness of a 
novel implementation technology for controlling 
optical characteristics in mode-multiplexing trans-
mission fiber in current terrestrial optical fiber cable 
structures [6]. To establish these fundamental tech-
nologies, we are accelerating R&D in cooperation 
with external partners, which is partially supported 
by the National Institute of Information and Commu-
nications Technology [7].

4.   Summary

In this article, we described the current state and 
future prospects for broadband optical parametric 
amplification repeater technology and mode-multi-
plexed SDM optical communication technology that 
are being studied as scalable optical transport tech-
nologies to overcome the capacity crunch toward the 
IOWN APN.
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1.   Introduction

Mobile communication systems, which are now 
essential for our daily lives, have evolved once every 
ten years. The 5th-generation mobile communication 
system (5G) service has been provided since 2020 in 
Japan, and much research for 6G, expected to be 
implemented in the 2030s, has been conducted 
around the world. The vision with mobile communi-
cation systems has been providing mobile multime-
dia functions including displaying websites, movie 
content, and reinforcement of application software in 
the 3G/4G era. The vision in the 5G/6G era will be 
expected to take on a role as a society infrastructure 
that can address various social issues and support 
diverse industries.

Use cases, target performance, and technology can-
didates expected for 5G evolution and 6G are 
described in NTT DOCOMO’s 6G White Paper [1], 
including the concept of 6G combined with innova-
tive networking and information technologies for the 
Innovative Optical and Wireless Network (IOWN) 
led by the NTT Group. Technical development in 6G 
addresses not only basic performance enhancement 
(e.g., extreme high data rate/capacity, extreme low 
latency, extreme high reliability, and extreme massive 
connectivity) but also new challenges including 
extreme coverage extension to the sky, sea, and space 

(Fig. 1). In this article, we introduce the following 
three core wireless technologies developed by NTT 
Network Innovation Laboratories toward 6G, i.e., 
orbital angular momentum multiple-input multiple-
output (OAM-MIMO) multiplexing transmission, 
underwater acoustic communication, and wireless-
link-quality prediction.

2.   OAM-MIMO multiplexing transmission for 
terabit-class wireless communication

The benefit of 5G is high-speed transmission by 
introducing wide bandwidth in the high-frequency 
band called millimeter waves, which is being used in 
mobile communication systems for the first time. The 
final target in 5G radio access is 20-Gbit/s transmis-
sion in future evolution, and 6G radio access is 
expected to reach 100-Gbit/s transmission by explor-
ing a higher-frequency band known as the sub-THz 
band to obtain more radio resources. However, a high 
density of base-station antennas has to be deployed 
compared with current systems due to the problems 
of straightness of radio waves and coverage holes due 
to blocking in such a higher-frequency band. There-
fore, a flexible network and easy installability are 
required for xHaul* connecting between base-station 
equipment. If wireless high-capacity xHaul is 
achieved, it will be possible to provide a highly dense 
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deployment solution of base-station equipment in 
areas where there is difficulty in optical wiring or 
temporary expansion of base-station equipment. 
However, wireless xHaul for 6G requires an extreme-
ly high capacity of over 1 Tbit/s (terabit-class) trans-
mission in consideration of radio access evolution 
described above, function split between base-station 
equipment, and accommodation of multiple types of 
base-station equipment (Fig. 2).

NTT Network Innovation Laboratories has con-
ducted advanced research on OAM multiplexing 
technology. OAM is a physical property of electro-
magnetic waves characterized by a helical phase front 
in the propagation direction. Since these characteris-
tics can be used to create multiple orthogonal chan-
nels, wireless communication using OAM can 
increase radio-spectrum efficiency. Given an electro-
magnetic wave having this OAM property, the trace 
of the same phase takes on a helical shape in the 
propagation direction. Different data signals can be 
transmitted simultaneously by transmitting different 
signals using radio waves having different OAM 
modes. Since radio waves having this OAM property 
cannot be received without a receiver having the same 
number of phase rotations at the time of transmission, 
multiple radio waves having different OAM modes can 
eventually be separated without mutual interference.

OAM-MIMO multiplexing transmission, originally 

proposed by NTT, uses coaxial uniform circular array 
(UCA) antennas for OAM transmission and reception 
in consideration of practical implementation. We 
combined OAM and existing MIMO technology by 
treating UCAs with different radii as sub-array anten-
nas for MIMO transmission so that an extreme 
amount of spatial multiplexing can be achieved while 
preventing the use of higher-order OAM modes, 
which is inappropriate for long-distance transmission 
(Fig. 3). Load reduction for baseband digital signal 
processing is one of the advantages of OAM-MIMO 
since signal processing can be separated into analog 
passive circuits for OAM and digital signal process-
ing for MIMO. This contributes to low-energy con-
sumption and achieving transmission with much 
wider bandwidth. 

An indoor experimental trial was conducted in the 
28-GHz band to challenge the limit of spatial multi-
plexing. The results indicate that OAM-MIMO can 
multiplex 21 spatial streams in combination with 
vertical/horizontal polarization and achieve high-
capacity transmission of 201.5 Gbit/s [2] (Fig. 4). An 
outdoor experimental trial was also conducted in the 
40-GHz band to prove the feasibility of long-distance 

* xHaul: Unified transport network infrastructure connecting be-
tween base-station equipment, e.g., fronthaul, midhaul, and back-
haul.

Fig. 1.   Requirements for 6G wireless technology.

E2E: end to end
eMBB: enhanced mobile broadband 
mMTC: massive machine-type communications

Source: DOCOMO 6G White Paper [1]

QoS: quality of service
URLLC: ultra-reliable and low latency communications
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Fig. 3.   Concept of OAM-MIMO multiplexing transmission.
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transmission. It was successful in 117-Gbit/s trans-
mission for 200 m [3]. We are now pushing forward 
with our research to achieve terabit-class wireless 
communication required for xHaul in 6G by expand-
ing the bandwidth up to 10 GHz and combining it 
with 20–40 spatial streams in advanced OAM-MIMO 
technologies.

3.   Underwater acoustic communication to 
extend coverage into the ocean

The development of offshore resources, such as oil 
and gas fields, has been growing, and remotely oper-
ated vehicles (ROVs) are used for offshore develop-
ment. Unmanned remote construction using ROVs is 
also being researched to improve worker safety and 
operational efficiency in port and harbor construction. 
Since the Mbit/s-class underwater communication 
capable of transmitting high-definition video has not 
yet been commercialized, these ROVs are connected 
to support vessels on the sea by long wired cables. 
The main drawback of wire-controlled ROVs is their 
high operational cost due to large support vessels and 
dedicated operators to hoist the long and heavy 
cables. Therefore, Mbit/s-class high-speed underwater 
communication that enables wireless remotely con-

trolled ROVs is highly desired. Underwater communi-
cation using various media such as radio waves, sound 
waves, and light have been studied. We have focused 
on sound waves, which are suitable for stable long-
distance communication, and are working to improve 
the speed of underwater acoustic communication.

Not only in underwater acoustic communication but 
in any wireless communication, waveform distortion 
occurs as a result of combining many waves from dif-
ferent paths. Therefore, wireless communication 
requires equalization to compensate for this waveform 
distortion. Due to the extremely slow propagation 
speed of sound waves compared with radio waves, 
waveform distortion drastically changes in underwater 
acoustic communication, which makes equalization 
more complicated. The conventional equalization 
technique, which compensates for the inverse response 
of waveform distortion, cannot track fast fluctuations 
in waveform distortion of underwater acoustic com-
munication because the inverse response cannot be 
estimated in time. As a result, the communication 
speed of conventional underwater acoustic communi-
cation has been limited to several tens of kbit/s [4].

To overcome the fast fluctuations in waveform dis-
tortion, we proposed an equalization technique called 
spatio-temporal equalization [5] (Fig. 5). This technique 

Fig. 5.   Concept of spatio-temporal equalization.
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achieves equalization by spatially removing the 
delayed waves that cause waveform distortion using 
adaptive beamforming. Spatio-temporal equalization 
does not require the estimation of the inverse response 
of waveform distortion, enabling Mbit/s-class high-
speed acoustic communication.

We conducted transmission experiments in the 
ocean to verify the effectiveness of this technology 
and succeeded in transmitting 5.12 Mbit/s at a dis-
tance of 18 m and 1.2 Mbit/s at a distance of 60 m [6]. 
We are currently working on achieving more than 1 
Mbit/s at a distance of 300 m by combining band-
width-division transmission technology, which uses 
multiple transmitters, with different resonance fre-
quencies to transmit broadband signals.

4.   Wireless-link-quality-prediction technologies 
using physical space information

In the 6G era, the use of physical space information 
will be more familiar because of various activities for 
Society 5.0 [7], which was proposed as a future soci-
ety that Japan should aspire to. The huge amount of 
physical space information will be stored in cyber 
space and become more accessible from everywhere. 

NTT Network Innovation Laboratories started to 
research the physical space information use to pro-
mote the evolution to wireless communication sys-
tems [8, 9]. The throughput and capacity in wireless 
communication systems have been basically enhanced 
using wireless system information and settings. The 
requirements for wireless communication systems 
are diversified and advanced because of emerging 
services. This raises the expectation of highly reliable 
wireless accesses. Physical space information use is 
one of the keys to evolve wireless communication 
systems since the long-term movement of communi-
cation devices and surrounding objects can be 
extracted from the physical space information. Long-
term prediction enables proactive actions with suffi-
cient time to prepare the advanced controls and 
develop the roles of wireless communication sys-
tems.

Throughput prediction using camera images is 
shown in Fig. 6 as an example of our work. Cameras 
first obtain images including communication device. 
A device is then detected from the obtained images 
by using object-detection algorithms with a pre-learned 
model. Finally, the wireless-link-quality-prediction 
model predicts link quality by using the detected 

Fig. 6.   Link-quality prediction using camera images.
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object information. The exteriors of communication 
devices are learned using object-detection algorithms 
that are based on deep learning, and the detected posi-
tion and movements of communication devices on 
the image are used to predict future link quality. Since 
a large number of cameras and sensors are expected 
to be connected to the IOWN All-Photonics Network, 
sustainable system design is also being researched to 
enable the addition and deletion of cameras and sen-
sors for prediction systems. The artificial-intelli-
gence-driven experimental rooms in which multi-
modal features including physical space information 
and wireless system parameters are automatically 
measured are being developed to evaluate the perfor-
mances of various machine learning technologies 
using big data measured in an experimental environ-
ment. The accurate prediction in the short and long 
term enables proactive controls, such as switching to 
better wireless connections, to change the application 
data rate or control the movement of communication 
devices and surrounding objects by detecting the link 
disconnection beforehand. We believe that physical-
space-information-based wireless-link-quality pre-
diction will extend the use cases of reliable wireless 
communication. 
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1.   Overview of connected vehicles

A connected vehicle, which is a mobility device 
equipped with communication capability, consists of 
various components, including a vehicle, communi-
cation networks (wired and wireless), and cloud com-
puting (Fig. 1). To implement these components, it is 
necessary to develop, use, and combine a wide range 
of technologies, including networks for exchanging 
data, edge computing for data processing in the prox-
imity of connected vehicles, a platform for storing 
and processing collected data, platform for analyzing 
and using data, and software updates.

As the potential for using big data expands, the 
volume of data to handle is expected to increase dra-
matically. Therefore, information and communica-
tion technology (ICT) platforms, such as networks 
and datacenters, that receive data from connected 
vehicles are growing in importance.

2.   Potential of vehicle big data

Connected vehicles are already in use, and the mar-
ket for them will continue to expand. If the large 

amount of data held by connected vehicles can be 
processed quickly and at low cost, it will become pos-
sible to use information that cannot be captured with 
current sensors and provide faster and more reliable 
services. This will in turn not only improve conve-
nience and efficiency but also enable people to drive 
more safely and securely, alleviate or eliminate traffic 
congestion, and shorten travel time, which will con-
tribute to achieving carbon neutrality (Fig. 2).

3.   Purpose and areas of joint research 
and development

In March 2017, the NTT Group and Toyota Motor 
Corporation agreed to collaborate in developing, 
verifying, and standardizing technologies needed in 
the connected-vehicle field by combining Toyota’s 
vehicle-related technologies and NTT Group compa-
nies’ ICT-related technologies.

By sharing the technologies and expertise of each 
company and using big data obtained from vehicles, 
the NTT Group and Toyota will work together to 
research and develop the technologies needed to 
solve problems facing society, such as traffic accidents 

Overview of Technical Development 
and Verification in the Connected-
vehicle Field
Atsushi Koizumi and Shin Mitsuhashi
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and congestion, and provide new mobility services to 
customers. The collaboration is aimed at creating a 
sustainable smart mobility society from a global per-
spective.

The collaboration activities can be broadly divided 
into the following three technical areas:

(1)  Data collection/storage/analysis platform: 
Establish a mechanism for storing and analyz-
ing data sent from millions or tens of millions 
of vehicles.

(2)  Internet of Things (IoT) network and datacen-
ter: Establish an optimal arrangement of net-
works and datacenters for collecting data from 
vehicles around the world.

(3)  Next-generation communication technology: 
Verify technology for vehicles to use the 5th-
generation mobile communication system 
(5G) and verify the applicability of edge com-
puting.

In December 2018, we set the goal of processing a 
large volume of data from within and outside vehicles 
to reproduce the physical space in the real world in 
real time (within seconds) and with a precision of tens 
of centimeters. We carried out field trials that covered 
the end-to-end mobility system including vehicles, 
networks, and datacenters.

Fig. 1.   Overview of a connected vehicle.

Data storage and
processing platform

Cloud

Data analysis and
utilization platform

Vehicle big data

OTA: over the air programming

Networking
Edge computing

OTA
(Software update)

Fig. 2.   Value provided by vehicle data.

Solving social
issues

Safe travel (zero accidents, zero
traffic congestion)

Contribution to carbon neutrality

Contribution to reducing damage
caused by natural disasters

New mobility 
services

Car sharing/ride sharing

Remote vehicle inspection service

Telematics insurance



Feature Articles

NTT Technical Review 39Vol. 20 No. 7 July 2022

4.   ICT platform for connected vehicles

The ICT platform for connected vehicles connects 
vehicles equipped with communication capability 
with edge computing nodes and the cloud through 
LTE (Long-Term Evolution), 5G, and IoT networks. 
It also uses computing resources to collect, store, and 
analyze data that are held or collected by vehicles 
(Fig. 3).

Data from connected vehicles are uploaded to data-
centers through the mobile network and edge nodes. 
The datacenter then collects, stores, and analyzes the 
data and returns the analysis results to vehicles 
through the network as necessary. Although this data 
flow is not much different from that of smartphones 
and small IoT devices, a mechanism for real-time, 
large-scale, and accurate processing of such data will 
become one of the important infrastructures for sup-
porting people’s daily lives and society at large.

5.   Method of conducting joint research 
and development

The joint research and development was conducted 
in two alternating activities: technical studies by a 
working group and verification of its study results 
using actual vehicles (Fig. 4).

In the working group weekly meetings, engineers 
from the two parties discussed multiple themes in 
parallel. The working group’s discussion results were 
verified using a testbed that involved more than a 

hundred physical servers, 5G, other communication 
links, and actual vehicles. The verification results 
were then fed back to the working group. This cycle 
was then repeated over a short period. The working 
group members were proud of the fact that the two 
parties grew together by bringing together their tech-
nologies and expertise and by repeating the above 
cycle, therefore quickly solved various technical 
issues.

6.   Activities in the collaboration on 
connected vehicles

The field trials of the ICT platform for connected 
vehicles were conducted from FY2018 to FY2020. 
The following two articles in this issue give an over-
view and the details of the field trials from the per-
spectives of NTT DATA and NTT Communications, 
which played a central role in the trials. These articles 
also introduce the technical results and achievements 
obtained and future challenges identified in the trials.

(1)  Activities and results of field trials—reference 
architecture for a connected-vehicle platform: 
The overall architecture and verification of the 
platform through use cases and verification 
results are presented [2].

(2)  Activities and results of field trials—network 
edge computing platform: An overview, the 
features, and methods of the platform are pre-
sented [3].

The ICT platform for connected vehicles involves a 

Fig. 3.   Overview of the ICT platform for connected vehicles.
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variety of technical challenges. The following five 
articles in this issue focus on representative technolo-
gies that have been studied and developed to solve 
these challenges and provide overviews of these tech-
nologies and value they provide, including verifica-
tion through use cases and field trials, and identify 
remaining challenges.

(3)  Real-time spatiotemporal data-management 
technology (AxispotTM): This technology 
stores, searches, and analyzes large volumes 
of data on dynamic objects [4].

(4)  Selective vehicle-data-collection algorithm: 
This technology determines data-collection 
priorities on the basis of meta-information, 
such as vehicle positions and time, observa-
tion range, and the effects of shielding by sur-
rounding vehicles [5].

(5)  Vertically distributed computing technology: 
This technology effectively uses limited serv-
er resources by dynamically changing the 
response-processing server on the basis of 
vehicle status [6].

(6)  Lane-specific traffic-jam-detection technolo-
gy: This technology detects lane-specific traf-
fic jams by collecting and analyzing dashcam 
video and driving data to achieve optimal lane 
navigation [7].

(7)  Technology for calculating suddenness index 
for aggregated values: To reduce the amount 
of processing on the ICT platform, this meth-
od calculates an index for periodic and sudden 
changes in aggregated values collected from 
vehicles on the basis of the degree of deviation 
from the ordinary state [8].

7.   Results and future outlook

“The Technical Document on the ICT Platform for 
Connected Vehicles” was compiled and published in 
November 2021 to report on the results and chal-
lenges of the three-year field trials [9]. We are hoping 
that the results of our activities will be widely used 
not only by those in the ICT and mobility industries 
but also by those in other industries.

The NTT Group and Toyota will continue to 
improve the speed, efficiency, and sophistication of 
the ICT platform for connected vehicles in prepara-
tion for the further spread of such vehicles. We will 
also continue to develop technologies that will con-
tribute to solving problems facing society, such as 
traffic accidents and congestion, by effectively using 
big data collected from vehicles and by creating value 
from such data.

We will also use the obtained technical results to 
plan social implementation of the ICT platform for 
connected vehicles and the deployment of the veri-
fied technologies in smart cities. We will develop 
technologies for providing high-speed, high-capacity 
communications and vast computing resources 
beyond the limits of the conventional platform and 
collaborate with various companies, organizations, 
and service providers to create and provide new 
mobility services, thereby contributing to achieving 
carbon neutrality and creating a sustainable smart 
mobility society that brings safety and security to 
people.
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1.   Characteristics of connected vehicles and 
technical challenges they pose

As the number of connected vehicles grows rapidly, 
the amount of data obtained from them, such as con-
troller area network (CAN) data, sensor data, and 
image data, is growing dramatically. How to process 
this enormous amount of data efficiently and in real 
time presents a major technical challenge for a large-
scale connected-vehicle platform. Connected vehi-
cles also have several unique characteristics: they 
need to use a mobile network for communication; 
move at high speed; have a long life cycle; and the 
amount of data to be handled varies greatly from hour 
to hour even within a single day. Therefore, using 
connected-vehicle data across a variety of use cases 
poses many complex technical challenges. 

The NTT Group and Toyota Motor Corporation are 
collaborating on research and development of an 
information and communication technology platform 
for connected vehicles. In conducting field trials to 
verify this platform, we set our goals from the per-
spectives of three particularly important component 
technologies: the processing of a large amount of 
data, real-time performance of the processing of such 

data, and the degree of precision in the data process-
ing. We have thus studied a connected-vehicle plat-
form that can work across various use cases of con-
nected vehicles and automated driving (Fig. 1).

2.   Use cases for the field trials

The field trials were conducted using test vehicles 
on public roads for three years from 2018 to 2020. 
The main objective of these trials was to establish the 
technologies for and evaluate the performance of a 
large-scale platform that will be able to handle mil-
lions of connected vehicles in the future. We verified 
the platform using the following three sample use 
cases, which are likely to be put into practice (Fig. 2).

(1)  Generation of a static map: The datacenter 
analyzes vehicle-location data and image data 
sent from connected vehicles and generates a 
high-precision static map required for auto-
mated driving.

(2)  Obstacle detection and notification to follow-
ing vehicles: Dangerous obstacles, such as 
falling rocks on the road, are detected using 
image data from cameras mounted on con-
nected vehicles. The datacenter manages this 

Activities and Results of Field 
Trials—Reference Architecture for a 
Connected-vehicle Platform
Yu Chiba
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tecture for the connected-vehicle platform, which collects, stores, and uses controller area network data 
(vehicle control data) and image data sent from in-vehicle devices. It also reports on the technical results 
obtained and challenges identified during the implementation of the platform and the field trials.
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information and notifies the following vehi-
cles of danger.

(3)  Lane-specific congestion detection: Both 
recurring and non-recurring traffic jams on 
each lane are detected using statistical infor-
mation in CAN data and real-time image data. 
The cause of a non-recurring traffic jam is 
identified by analyzing images of the front 
point of the traffic jam.

We evaluated the feasibility of these three use cases 
through the field trials. Among the component tech-
nologies needed for a large-scale connected-vehicle 

platform, we focused on the above three component 
technologies and set the following goals: the process-
ing of large amounts of data, real-time processing of 
such data, and the degree of precision in the data 
processing.

3.   Reference architecture for the  
connected-vehicle platform

Data from connected vehicles are collected via 
wireless networks (LTE (Long-Term Evolution) net-
work and the 5th-generation mobile communication 
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system (5G) network) and stored in servers in data-
centers. The data are analyzed, and analysis results 
are sent back to connected vehicles. We incorporated 
this end-to-end system into the reference architecture 
for the connected-vehicle platform. This reference 
architecture consists of six platforms: a network-edge 
computing platform, which has a real-time link with 
connected vehicles, a reception and annotation plat-
form, which receives data from edge computing 
nodes, CAN data processing platform and image data 
processing platform, both of which process data, 
dynamic map platform, which manages data, and 
notification and delivery platform, which manages 
communication from datacenters to connected vehi-
cles.

We implemented this architecture using open-
source software programs that had become de facto 
standards in the global market. The goal of this col-
laboration is to develop technologies that will lead to 
standardization with a policy of establishing tech-
nologies that are more open and not dependent on the 
proprietary software of a specific company. There-
fore, the software is structured in such a way that it 
can be revised as technology advances and innova-
tions emerge (Fig. 3).

4.   Verification of use cases

A server environment for the field trials was imple-
mented in a datacenter based on the reference archi-
tecture described above. The feasibility of the follow-
ing three use cases was verified using test vehicles.
(1) Generation of a static map

In this use case, an operator at the datacenter first 

sends an instruction to connected vehicles to generate 
a map. When a connected vehicle running in the tar-
get area receives the instruction, it sends CAN data 
and image data to the datacenter. The datacenter 
executes preprocessing for generating a map from the 
image data, estimates the locations of traffic lights 
and other objects from the image data, generates map 
data, and registers the data in the map database. We 
verified all these processes (Fig. 4).
(2)  Obstacle detection and notification to following 

vehicles
In this use case, the datacenter uses image data 

from onboard cameras and learned obstacle data to 
infer an object in images. If the object is an obstacle, 
its location is estimated and registered in the dynamic 
map database. A challenge in this use case is real-
time performance. For this to be practical, it is neces-
sary to detect an obstacle and notify the vehicles 
approaching in the rear of it within 7 seconds. We 
adopted an architecture that offloads parts of this 
processing to the network-edge computing nodes, 
which greatly improved real-time performance. We 
further improved this performance by sending danger 
notifications in two stages. The first notification is 
sent promptly to the vehicles in a wider area without 
taking time to narrow down the affected area. The 
vehicle in danger in a specific lane is then identified 
and a second notification is sent to that vehicle 
(Fig. 5).
(3) Lane-specific congestion detection

In this use case, the datacenter identifies the cause 
of a traffic jam in three steps. In Step 1, the datacenter 
analyzes CAN data of running vehicles in real time 
and narrows down the candidate traffic-jam front 

Fig. 3.   Reference architecture.
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point on the basis of vehicle density per mesh and per 
lane. Recurring traffic jams are excluded because 
their causes can be identified in advance; thus, we 
focused on non-recurring traffic jams. In Step 2, the 
datacenter collects image data from the vehicles run-
ning in the vicinity of the potentially congested lane 
identified in Step 1. Using the image data, the data-
center determines whether there is a traffic jam, its 

location, and its front point, and identifies its cause. 
In Step 3, the datacenter notifies the vehicles running 
in the affected lane of the cause of the traffic jam 
obtained in Step 2 (Fig. 6).
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5.   Verification of the platforms of the 
reference architecture

We evaluated the following platforms of the refer-
ence architecture.
(1) Reception and annotation

We evaluated this platform by focusing on the per-
formance limits of CAN data and image data process-
ing. Specifically, we evaluated the load performance 
of annotation processing and queuing processing and 
identified bottlenecks under a simulated condition in 
which 5 million vehicles were sending data at inter-
vals ranging from a minimum of 1 second up to 10 
seconds.
(2) CAN data processing

We evaluated this platform in terms of real-time 
performance and throughput. We implemented real-
time processes, such as the regular storage of vehicle 
location information, through CAN stream process-
ing and evaluated the performance limit of their 
respective response times.
(3) Image data processing

We evaluated this platform in terms of real-time 
performance and throughput. We implemented real-
time image processes, such as obstacle detection, 
through image stream processing and evaluated the 
performance limit of their respective response times.

(4) Notification and delivery processing
We evaluated this platform in terms of the cost of 

image collection, which can become a bottleneck in 
each use case. An algorithm for selective collection of 
vehicle data, which was developed by NTT, was used 
to reduce the amount of image data collected. We 
evaluated the performance of communication infra-
structure technologies assuming that this algorithm 
was used.

The verification of the network-edge computing 
platform is not described here because it is described 
in another article in this issue: “Activities and Results 
of Field Trials—Network Edge Computing Platform” 
[1].

6.   Issues identified and future activities

We verified the reference architecture for three 
sample use cases using test vehicles running on pub-
lic roads. In evaluating the communication infrastruc-
ture technologies needed for a large-scale connected-
vehicle platform, we set goals for data volume, real-
time performance, and precision (Fig. 7). Regarding 
data volume, we used simulation data and success-
fully verified that the data processing platform can 
handle 30 million vehicles. Regarding real-time per-
formance, we used network-edge computing and 

Fig. 6.   Lane-specific congestion detection.
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achieved an average notification time (time taken 
before sending notification) of 5 seconds (the target 
was within 7 seconds) in the obstacle-detection use 
case. We attempted to improve precision by using 
visual simultaneous localization and mapping 
(V-SLAM)*, landmark location information, and an 
inertial measurement unit (IMU). Despite these 
efforts, we were not able to achieve our target of 
10-centimeter precision. This will be an issue for 
future technological development.

While we achieved our initial goals, except for pre-
cision, we also identified a number of technical 
issues. The collection, storage, and utilization of 
large amounts of image and other data impose a 
heavy burden on networks and server resources. For 
these technologies to be implemented in society, it is 
necessary to develop technologies that are not only 

functionally feasible but also more efficient and less 
expensive. To achieve these targets, we are develop-
ing technologies that use edge computing to distrib-
ute processing loads and use resources efficiently. We 
will also expand the application of these technologies 
to cases in which they can address social issues, such 
as contributing to a low-carbon society, a contribution 
that is particularly expected of the automobile indus-
try.
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Fig. 7.   Activity results.
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1.   Introduction

At the early stage of the field trials conducted by 
Toyota Motor Corporation and the NTT Group, a 
large datacenter collected data from vehicles, and 
many servers were installed at the datacenter to pro-
cess the data in a distributed manner. However, this 
architecture was not able to achieve the target scal-
ability (handling 30 million vehicles) and processing 
time (sending a response within 7 seconds). To over-
come this limitation, edge nodes were placed between 
vehicles and the datacenter, and some data processing 
was delegated to these edge nodes. Usually, the term 
“edge node” refers to a terminal device, for example, 
the computing resource in a vehicle in the case of a 
connected vehicle. With our new approach, however, 
edge nodes are also geographically distributed but 
located between vehicles and the datacenter.

Challenges in using edge nodes include not only the 
need to establish the appropriate application architec-
ture but also a network-related need to transport data 
appropriately so that load balancing can be achieved 
between the servers and distributed edge nodes. To 

address the latter issue, we developed an architecture 
in which processing systems executing multiple net-
work functions are located between a vehicle and the 
application group. In the field trials, we verified 
whether this architecture is effective for solving this 
issue. To distinguish these processing systems from 
applications installed at terminals (edges), we refer to 
these processing systems as Network Edge (Fig. 1).

Network Edge acts as a gateway when vehicles 
upload data and a gateway when applications in the 
datacenter send notifications to vehicles. One of the 
goals with Network Edge is to hide the complexity of 
the network or infrastructure so that application 
developers can concentrate on developing application 
functions.

2.   Target use cases

To avoid narrowing down target use cases too 
much, we selected two fundamental use cases to 
verify the performance of Network Edge: vehicle 
movement and wide-area rerouting (Fig. 2).

In the use case of vehicle movement, the application 
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Fig. 1.   Overview of Network Edge.
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facility and server to which a vehicle is connected are 
switched as the vehicle moves. In principle, data are 
processed at the edge node closest to the vehicle con-
cerned, and the results are sent from there to neigh-
boring vehicles. This can be described as local pro-
duction for local consumption of data. As the vehicle 
moves, it is necessary to switch not only the edge 
node to which the vehicle is connected but also the 
application executing the server. We verified whether 
this switching requirement can be supported by net-
work technology.

In the use case of wide-area rerouting, the applica-
tion facility to which a vehicle is connected is 
switched when a failure occurs at the facility or when 
it is necessary to execute load balancing. As edge 
nodes are distributed, a failure or overload of an edge 
node makes it necessary to transfer the processing 
load from the edge node concerned to neighboring 
edge nodes. We verified whether, in the proposed 
architecture, failures of edge nodes can be detected 

and transfer of processing loads between edge nodes 
can be supported.

3.   Network Edge functions and 
verification items

Network Edge performs three main functions: con-
trol of routing to application servers at datacenters, 
load balancing based on metrics, and message queu-
ing distributed over a wide area. If we put geographic 
distribution aside for the moment, data from a vehicle 
reaches an edge node via a wireless access network, 
such as a mobile network. The control functions men-
tioned above send data to applications on the edge 
node or, in some cases, to applications in the datacen-
ter site.

In the field trials, we implemented an environment 
with multiple edge nodes using datacenters in Tokyo 
and Osaka to confirm the two use cases and verified 
the effectiveness of the three functions (Fig. 3). Since 

Fig. 3.   Overview of the environment for the field trials.

5G: the 5th-generation mobile communication system

5G field-trial area Vehicle data for 5 million vehicles

Experimental servers at
Osaka Data Center

Experimental servers at
Tokyo Data Center

Loading
system

The field trials using actual vehicles were conducted in the Odaiba area in Tokyo.

01010
1010101

010

01010
1010101

010

01010
1010101

010
01010

1040101
010



Feature Articles

51NTT Technical Review Vol. 20 No. 7 July 2022

the use of Transport Layer Security (TLS) is assumed 
to encrypt communication with vehicles for increased 
security, terminating TLS at Network Edge may 
become a processing bottleneck. Therefore, we veri-
fied the performance of TLS termination. Details of 
these verifications are described below.

4.   Routing control

We investigated two methods of controlling routing 
data from a vehicle to an application server: the 
domain name system (DNS) method and load bal-
ancer (LB) method. We confirmed the basic functions 
and performance of the two methods and investigated 
how they behave when a vehicle moves or wide-area 
rerouting takes place as a result of a facility failure.

(1)  DNS method: Border Gateway Protocol 
(BGP) Anycast connects a vehicle to the near-
est DNS server, and the DNS server selects the 
most appropriate datacenter and application 
server and notifies the vehicle of this informa-
tion.

(2)  LB method: BGP Anycast connects a vehicle 
to the nearest LB server, and the LB forwards 
requests from vehicles to the most appropriate 
server at the most appropriate datacenter.

With the LB method, vehicles always communicate 
with the application via the LB. This lowers perfor-
mance but makes finer-granularity control possible. 
We compared the two methods in the early stage of 
the field trials and found that both were applicable to 
the target use cases. Therefore, from then on, the field 
trials were based on the LB method.

5.   Load balancing using metrics

On the assumption that applications were located in 
multiple servers in multiple datacenters and pro-
cessed in a distributed manner, we verified load bal-
ancing in which the datacenter and server to use were 
determined on the basis of metrics information, and 
in which the routing control described above was 
used.

We examined whether extreme performance degra-
dation could be avoided by detecting server or data-
center failures, software process failures, or over-
loads from received information about response 
times from application servers, facility information, 
and metrics of the infrastructure resources, and by 
conducting load balancing on the basis of the detect-
ed situation. We also verified whether the load can be 
distributed over a wide area in specified proportions. 

For example, when the application load exceeds a 
threshold during an experiment, 70% of the load at 
Center 1 is processed at Center 1 and the remaining 
30% is offloaded to Center 2.

6.   Wide-area distributed message queuing

If the only response to a server or datacenter failure 
is to reroute data to a server in another datacenter, 
data transmission from vehicles would fail during the 
rerouting time. If this occurs, depending on the situa-
tion, it is necessary either to retransmit data or give up 
sending data. The purpose of the wide-area distribut-
ed message-queuing function is to prevent this from 
occurring.

As the term “message queue” indicates, the mes-
sage-queuing function receives data only temporarily. 
A message queue resides at each edge node; there-
fore, message queues at different nodes work together 
to deliver data to the appropriate servers when 
offloading processing loads.

Since the edge node to which a vehicle is connected 
is switched as the vehicle moves, the datacenter that 
wants to send a notification to a vehicle needs to 
know the edge node to which the vehicle is currently 
connected. We aimed to satisfy this need using this 
queuing function. When the datacenter receives mes-
sages from applications, it retains them so that it can 
send them to the vehicle concerned even if the vehicle 
has moved to an area covered by a different edge 
node. In the field trials, we examined whether this 
occurs reliably.

If Apache Kafka or similar software is used to 
execute these processes, problems arising in that data 
are exchanged unnecessarily between datacenters; 
thus, it is impossible to manage notification delivery. 
To avoid this problem, we combined basic message-
queuing software with a proxy program we devel-
oped. (We used NATS, which is open-source soft-
ware, for the basic message-queuing function.) The 
properties required for data upload and data down-
load (sending notifications) are different. Therefore, 
for the former, we used a mechanism with which the 
target data are first selected then sent. For the latter, 
we adopted a mechanism with which metadata are 
shared and there is a logical queue that spans different 
datacenters.

7.   Verification of TLS performance

Vehicles communicate using TLS to ensure security. 
Applications communicate using HTTPS (Hypertext 
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Transfer Protocol Secure) or MQTTS (Message 
Queuing Telemetry Transport Secure) because they 
use HTTP or MQTT. Since we chose to use the LB 
method for routing control in this verification, the 
Layer 7 LB software needs to handle a large number 
of transactions. Normal tuning alone would result in 
a central processing unit bottleneck. Therefore, TLS 
processing was offloaded to another piece of hard-
ware. We verified whether this would improve perfor-
mance and resource-usage efficiency. Two types of 
hardware, TLS Accelerator and SmartNIC, both of 
which can be installed in a standard AMD64 server, 
were used for this verification. Although we have not 
yet been able to confirm the effectiveness of this 
method when the dominant traffic is data uploaded 
from vehicles, we will continue to verify this method 
since, for a connected vehicle platform designed for 
tens of millions of vehicles, it is important to mini-
mize the number of required servers by using 
resources efficiently.

8.   Future outlook

In these field trials, we implemented an architecture 
in which Network Edge, which perform multiple 
functions, is placed between vehicles and applica-
tions [1] and were able to confirm the effectiveness of 
this architecture.

On the basis of this architecture, we will further 
develop technologies and attempt to combine them 
with other technologies to develop a more advanced 
platform. For example, we are considering the appli-
cation of artificial intelligence to metrics-based load 
balancing and coordination with priority control of 
application servers. We will continue our efforts to 
achieve a world in which intelligent network technol-
ogy supports real-time communication of tens of mil-
lions of fast-moving vehicles and in which engineers 
can concentrate on developing applications without 
worrying about complex infrastructure conditions.
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1.   Introduction

Internet of Things (IoT) technology makes it pos-
sible to collect a range of information about people, 
objects, and the natural environment in real space and 
centrally manage these pieces of information on the 
cloud. IoT is becoming essential for next-generation 
services that require management of moving objects, 
such as people and vehicles. Such services include 
lane-specific congestion detection, route search to 
avoid congested routes, and aerial delivery of goods by 
drones. In a collaboration between NTT and Toyota 
Motor Corporation, we are studying an obstacle-
detection use case, in which vehicles approaching an 
obstacle on the road are immediately notified of the 
obstacle. To enable this use case, it is necessary to 
store a large amount of data in real time, search the 
data in real time for vehicles present within a certain 
area at any specific time, and determine the number 
of these vehicles.

NTT Human Informatics Laboratories is develop-
ing a real-time spatiotemporal data-management 
system, AxispotTM*1 [1, 2], which stores data sent 

simultaneously from a large number of moving 
objects and searches the data in real time for moving 
objects present within a certain area at any specific 
time (Fig. 1). The following sections present four 
technical issues facing current technologies and 
introduce the four core technologies that are included 
in AxispotTM, which are intended to overcome these 
technical issues. We also evaluate the improvement in 
performance achieved with these technologies. Final-
ly, the issues being addressed to further advance our 
research and development efforts, as well as their 
future outlook, are described.

2.   Technical issues

A spatiotemporal database is a database for effi-
ciently storing, searching for, and extracting groups 
of data related to both spatial information, such as 
latitude and longitude, and temporal information, such 
as time and period [3, 4]. Searching a spatiotemporal 
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database for objects present within a certain area of a 
certain shape (road, parking lot, etc.) using spatial 
information is called a polygon search. To enable the 
obstacle-detection use case, it is necessary to store 
data generated by a huge number of vehicles through-
out the country in a spatiotemporal database and use 
polygon searches to extract only specific vehicles. 
However, the following four technical issues stand in 
the way of achieving our target performance.

•  Issue 1: In an ordinary spatiotemporal database, 
indexes are generated on the basis of a search 
tree*2, which is commonly used in relational data-
bases. However, when data are to be stored or 
deleted in such a database, an update to the search 
tree occurs. If the database is handling data from 
tens of millions of vehicles, such search tree 
updates significantly reduce the efficiency of 
storing, updating, or deleting data, making it dif-
ficult to store data in real time.

•  Issue 2: When it is necessary to handle a large 
amount of data, a distributed database consisting 
of multiple servers is used. In such a case, each 
server is usually assigned to the management of 
data for a specific region. However, the number of 
vehicles on the road differs from region to region 
and varies with the time of day. Therefore, the 

amount of data handled by a server varies greatly 
among the servers that make up a distributed 
database. As a result, the load may be concen-
trated on a few servers, thereby significantly 
reducing processing performance and making 
real-time storage and search difficult.

•  Issue 3: With a polygon search, the more vertices 
the target polygon has, the slower the search 
becomes [5]. Unfortunately, the polygons pro-
vided by high-precision maps*3, which have 
become popular, have a large number of vertices. 
Therefore, polygon searches that use polygons 
provided by a high-precision map are slow, fall-
ing far short of the speed required for real-time 
search.

•  Issue 4: When aggregating the number of vehicles 
on each road around the country on the basis of 
spatiotemporal data in a database, it is necessary 
to assign the number of meshes or polygons 
within the aggregation area to computers in a 
manner that takes into account the number of  
running vehicles in each mesh or polygon. In 

Fig. 1.   Image of using AxispotTM.
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most services, the number of meshes or polygons 
is manually assigned to computers in advance. 
However, as mentioned earlier, the number of 
running vehicles varies depending on the region 
and time of day. Consequently, the amount of 
jobs*4 allocated to each computer is highly 
uneven, making aggregation computation ineffi-
cient.

3.   Proposed technologies

This section describes the four technologies pro-
posed by NTT Human Informatics Laboratories to 
address technical issues (1) through (4) mentioned 
above then introduces the overall architecture of 
AxispotTM.

3.1   Spatiotemporal indexing
This technology does not use a tree structure. It is 

an indexing technology that uses the characteristics 
of a space-filling curve called a Morton curve. The 
two-dimensional (2D) Morton curve shown on the 
left of Fig. 2 is a process of repeatedly dividing the 
world map into four parts and assigning either bit [0] 
or [1] to each partitioned area. The longer this 1D bit 
sequence becomes, the narrower the area it repre-
sents. A forward match search can be executed on this 
bit sequence to search a certain range of space. For 
example, a search of the forward bit [1001...] is a 
search of the yellow box area in the world map shown 
in Fig. 2. We added a time dimension to the Morton 

curve, thereby extending it to a 3D Morton curve. 
Furthermore, the forward and backward bits of the 
generated bit sequence are respectively stored as Key 
and Value in a database called key-value store, as 
shown on the right of Fig. 2. As a result, a spatiotem-
poral range search can be executed on the basis of an 
exact match of Key. This spatiotemporal indexing 
technology makes both high-speed data storage and 
real-time spatiotemporal range search possible with-
out using a tree structure.

3.2   Limited node selection
This technology is a new data-distribution technol-

ogy that determines multiple combinations of servers 
on the basis of location and time and distributes data 
to one of the combinations. This technology provides 
the three effects shown in Fig. 3. (1) Load distribution 
can be equalized by selecting multiple servers instead 
of selecting one specific server for a specific region. 
(2) Since the selected servers included in a combina-
tion change with the passage of time, continuous load 
on specific servers can be prevented. (3) At the time 
of the search, a unique combination of servers can be 
identified on the basis of time and space. Therefore, 
unnecessary searches involving all servers can be 
prevented. This limited node-selection technology 
prevents load concentration on specific servers and 
enables high-speed storage and search.

Fig. 2.   Spatiotemporal index.
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3.3   High-speed polygon search
This technology applies the Douglas-Peucker algo-

rithm [6] for simplifying polygonal lines forming 
polygonal shapes to significantly reduce the number 
of vertices while maintaining the original polygonal 
shape and to speed up polygon search. By applying 
the Douglas-Peucker algorithm to the polygon (raw 
data) in Fig. 4, a polygon with a significantly reduced 
number of vertices (proposed technology) is gener-
ated. After applying this conversion, the high-speed 
polygon search technology efficiently manages poly-
gons in a database. This technology prevents any 

reduction in polygon search speed by using polygons 
generated on the basis of a high-precision map, mak-
ing real-time search possible.

3.4   High-speed spatiotemporal data aggregation
This technology automatically allocates aggrega-

tion jobs within the target aggregation range of spa-
tiotemporal data to computers by using a distributed 
processing platform. As shown in Fig. 5, when data 
for a spatial area are to be aggregated using meshes, 
jobs are allocated to computers in such a way that the 
amount of jobs allocated to each computer is equal 

Fig. 3.   Limited node selection.
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even though the meshes allocated to each computer 
may be spatially scattered. This high-speed spatio-
temporal data aggregation technology prevents the 
allocation of uneven amounts of jobs across comput-
ers and reduces the aggregation response time.

AxispotTM includes these four technologies and has 
the architecture shown in Fig. 6. The spatiotemporal 
database shown in the figure can use Redis [7] and 
Apache Ignite [8] to store spatiotemporal data. The 
static polygon database can use open-source soft-
ware, such as PostgreSQL [9], to store polygon infor-
mation.

4.   Evaluation

This section shows a comparison between when 
both spatiotemporal indexing technology and limited 
node-selection technology are applied to a database 
and when neither technology is applied (i.e., only 
conventional technologies are used) to the same data-
base. We collected data for several million vehicles, 
the number of vehicles constantly running in the 
Kanto region surrounding Tokyo, and used a dataset 
that was designed to search for vehicles that exist in a 
specific space and time. As shown in Fig. 7(a), we 
confirmed that storage performance improved by a 

factor of 3.1 and search performance by a factor of 
246. As shown in Fig. 7(b), we also confirmed that 
these technologies prevent load concentration 
because they evenly allocate data to the servers that 
make up the distributed database. By using these 
technologies in the collaborative field trials with 
Toyota Motor Corporation, we were able to achieve 
real-time vehicle data storage and search.

5.   Future outlook

NTT Human Informatics Laboratories is develop-
ing a technology called Digital Twin Computing [10], 
which copies all relevant objects in the real world into 
a virtual space in real time. To enable this, it is essen-
tial to store and update, in real time, data that are 
transmitted simultaneously from all moving objects, 
including not only humans and vehicles but also 
drones, ships, and satellites, and to search an area of 
any shape, such as a city (buildings, roads, etc.) and 
environments (rivers, etc.), for the necessary data. 
Therefore, we are studying the extension of indexing 
in the height dimension, which is currently not sup-
ported by AxispotTM, as well as the searching of 3D 
polygons.

Fig. 5.   High-speed mesh-based aggregation.
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Fig. 6.   AxispotTM architecture.
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1.   Potential of connected vehicles

Connected vehicles are expected to become key 
players in using information and communication 
technology in road transportation. They also hold 
great potential as a sensing platform. Since connected 
vehicles are equipped with various high-end sensors 
and communication modules and move around a city 
with virtually no risk of running out of battery, they 
are ideal as mobile sensor nodes. If camera images 
and LiDAR (light detection and ranging)* point-
cloud data from tens of millions of connected vehi-
cles could be collected, it would be possible to con-
tinuously scan an entire city and build a digital twin 
of that city.

2.   Assumed use case

Unfortunately, the total amount of sensor data gen-
erated by tens of millions of connected vehicles 
ranges from 10 to 100 Tbit/s. This is too enormous for 
communication networks, computers, and storage 
units to handle. This means that it is impractical to 
collect all available sensor data. It should be noted 

that sensor data include not only data that should be 
collected immediately but also data for which some 
collection delay is tolerable, data for which periodic 
collection is sufficient, and data that are of no value. 
Therefore, it is important to selectively collect impor-
tant sensor data on a priority basis. By adjusting the 
pace and timing of sensor-data collection in accor-
dance with the amount of load on the communication 
network and computers, it is also possible to equalize 
the load fluctuation over time, thus improve facility-
utilization efficiency.

The collaboration projects between Toyota Motor 
Corporation and the NTT Group include several use 
cases that require the selective collection of sensor 
data. This article focuses on the obstacle-detection 
use case and introduces the technical challenges, 
implementation details, and our efforts to improve the 
performance of selective collection. In this use case, 
obstacles on the road are assumed to be moved by the 
wind or removed by the road administrator. Therefore, 

Selective Vehicle-data-collection 
Algorithm
Masaru Takagi, Kazuya Matsuo, Ryota Nakada,  
and Koya Mori

Abstract
In an obstacle-detection use case, in which a monitoring system keeps track of an obstacle on the road, 

the system needs to continuously collect the latest images of the obstacle captured using onboard cam-
eras. Although image-recognition technology can be used to accurately select relevant images (images 
that capture the obstacle in question), computational resources available in a vehicle are too limited to 
execute this task. In addition, transferring all images via a mobile network to the cloud incurs consider-
able communication costs. To solve these problems, we devised a technology that estimates the range of 
the area that can be captured with each camera (hereafter, visible range) and selectively collects only the 
relevant images. The visible range is estimated on the basis of meta-information, such as vehicle posi-
tion, direction of movement, and camera angle of view.
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the monitoring system keeps track of an obstacle on 
the road by collecting images from vehicles passing 
in the vicinity of the obstacle (Fig. 1).

3.   Approach based on image recognition

At first glance, the use of image recognition seems 
to be the obvious approach to select images that cap-
ture the obstacle to be monitored. This approach can 
be implemented in two different configurations, but 
both present significant problems.
Configuration 1: Image recognition is executed 
within connected vehicles

The simplest configuration is to mount a computer 
on a connected vehicle to execute image recognition. 
However, this configuration has three problems 
unique to vehicles.

First, the temperature inside a vehicle under the 
burning sun in mid-summer can reach close to 80°C 
[1]. At such a high temperature, it is not easy to keep 
the computer operating stably. Second, it is said that 
the average usage rate of passenger cars is only 5%. 
If the computer stays idle most of the time, having a 
computer in a passenger car is not cost-effective. 
Third, the product life cycles of vehicles and comput-
ers differ greatly. The computer will reach the end of 
its life cycle or become obsolete in terms of perfor-
mance much earlier than the vehicle on which it is 

mounted. Considering these problems, it is not realis-
tic to install a computer capable of image recognition 
in a connected vehicle.
Configuration 2: Image recognition is executed in 
the datacenter

If there is a connected-vehicle platform in place, all 
images can be transferred to the datacenter so that 
image recognition can be executed there. Although 
this configuration prevents the three problems men-
tioned above, the cost of image transfer over the 
mobile network is very high. The load on the mobile 
network is also enormous because images are sent 
from tens of millions of vehicles simultaneously. 
Even if sensor-data traffic from a connected vehicle is 
just 1 Mbit/s, the total traffic from 10 million vehicles 
can reach 10 Tbit/s. This is 15 times the current vol-
ume of mobile communication traffic in Japan [2].

4.   Approach based on location information

Faced with the problems mentioned above, we re-
examined the requirements for the obstacle-detection 
use case. There is no need to detect an obstacle with 
high precision during image selection because the 
collected images are analyzed in detail at a later stage 
of processing. The number of images to be analyzed 
should be kept as small as possible because the pro-
cessing for image analysis requires a large amount of 

Fig. 1.   Overview of the obstacle-detection use case.
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computation. Since the location of the obstacle to be 
monitored is already known, there is also no reason 
not to use this information as a clue.

In light of the above, we devised a technology that 
selectively collects images without relying on image 
recognition. Specifically, it estimates the visible 
range of the onboard camera of each vehicle on the 
basis of meta-information, such as the locations of 
surrounding vehicles, direction of the vehicle’s 
movement, the vehicle’s size, the angle of view of its 
camera, and the camera’s resolution. Images that are 
likely to have captured the obstacle are then selected 
on the basis of the positional relationship between the 
obstacle and each vehicle. This image-selection pro-
cess consists of the following five steps (Fig. 2).
Process 1: Maintain a vehicle-information data-
base

Vehicle meta-information, which provides impor-
tant clues for image selection, is routinely collected 
from connected vehicles and stored in the real-time 
spatiotemporal database AxispotTM.
Process 2: Search the vehicle-information data-
base

When a request for obstacle monitoring arrives, the 
system searches the vehicle-information database 
using the spatiotemporal index associated with the 
obstacle location and the current time and selects the 

search hits as candidate vehicles.
Process 3: Determine the distance

Next, the distance between each candidate vehicle 
and the obstacle is calculated, and any vehicle with a 
distance from the obstacle greater than the visible 
range of its onboard camera, which is calculated from 
the resolution of the onboard camera, is eliminated 
from the list of candidates.
Process 4: Determine the angle of view

Next, the direction of the obstacle from each candi-
date vehicle is calculated, and any vehicle that is 
estimated not to have captured the obstacle within the 
angle of view of its onboard camera is eliminated 
from the list of candidates.
Process 5: Detect shielding vehicles

Finally, the positional relationship between sur-
rounding vehicles and the obstacle on the road is 
examined, and any vehicle that is found to be unable 
to detect the obstacle because its view of the obstacle 
is blocked (shielded) by other vehicles is eliminated 
from the list of candidates.

5.   Reducing complexity for shielding 
vehicle detection

Of these five steps, the detection of shielding vehi-
cles demands the most complex computation and 

Fig. 2.   Process of image selection based on meta-information.
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accounts for the bulk of the computation time. There-
fore, during the field trial period, we attempted to 
substantially improve the algorithm for shielding 
vehicle detection. This section presents the algorithm 
before and after this improvement, in this order.

The most intuitive method of detecting a shielding 
vehicle is to calculate the visible range of each candi-
date vehicle and determine whether there is any 
vehicle within this range that blocks the view of the 
obstacle. For example, suppose there are six vehicles 
in the vicinity of an obstacle, as shown in Fig. 3. A 
fan-shaped field of view is drawn for each of the six 
vehicles on the basis of the angle of view and visible 
range of its camera. The system then checks whether 
a vehicle’s view of the obstacle is blocked (shielded) 
by any of the other five vehicles and eliminates any 
vehicle that is unable to detect the obstacle. Since this 
method requires a brute-force examination of any 
shielding vehicle, the computational complexity is 
O(n2), where n is the number of vehicles. This means 
that, as the number of vehicles in the vicinity of the 
obstacle increases, the processing time increases rap-
idly. Therefore, in situations where many vehicles are 
densely packed around the obstacle due to traffic 
congestion, the processing time can become very 
long.

We, therefore, took on the challenge of improving 
the algorithm to reduce the amount of computation. 
The key point of this improvement effort was to aban-
don the conventional approach of calculating the vis-
ible range of each onboard camera. We reversed the 
thinking: from examining whether a vehicle can 

detect the obstacle to examining whether the obstacle 
can detect the vehicle (i.e., whether the view of the 
vehicle from the obstacle is blocked by another 
vehicle). The system calculates the visible range of 
the obstacle instead of the visible range of the vehicle 
to determine whether any vehicle blocks the view of 
the obstacle from each vehicle (Fig. 4). With this 
method, the system examines each vehicle, one by 
one, to check whether it blocks the view of other 
vehicles. This eliminates the need for a brute-force 
calculation and reduces the computational complexi-
ty to O(n). Also, by approximating the fields of view 
as a set of fan shapes, the process of determining 
whether a vehicle blocks the view of others can be 
implemented in a very simple manner.

6.   Performance evaluation

We evaluated the processing time before and after 
the algorithm improvement for various vehicle loca-
tion patterns (Fig. 5). It was assumed that the visible 
range of the onboard cameras was 100 m. The num-
ber of vehicles posited to be present within a 100-m 
radius of the obstacle was varied. To evaluate the 
worst case, it was important to set a sufficiently high 
upper limit for the number of vehicles. We set the 
upper limit at 2000 vehicles, assuming that the vehi-
cles were packed as densely as in a parking lot. Java 
was used as the language for implementing the selec-
tion algorithm. A geometric calculation library called 
JTS Topology Suite [3] was used with the algorithm 
before the improvement, but not after the improvement.

Fig. 3.   Example of checking for presence/absence of a shielding vehicle (before algorithm improvement).
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Figure 6 shows the processing time for each vehi-
cle-location pattern with varying the number of 
vehicles. Before the algorithm improvement, the 
processing time for detecting shielding vehicles 
increased rapidly in proportion to the square of the 
number of vehicles. After the algorithm improve-
ment, the processing time was proportional to the 
number of vehicles. In the worst-case scenario with 
2000 vehicles, the processing time for detecting 
shielding vehicles was 25 ms, which is 1/60 of the 
processing time before the algorithm improvement.

7.   Future outlook

In these field trials, we optimized the shielding-
vehicle-detection algorithm for the requirements of 
the obstacle-detection use case and achieved a pro-
cessing speed 60 times faster than that for when the 
algorithm was implemented in a conventional manner 
using a geometric calculation library. In the future, 
we will investigate the possibility of using our study 
results for applications other than connected vehicles.

For example, when creating a digital twin of a city, 
it is necessary to ensure that it reflects the latest state 
of the city by periodically re-sensing every area. 

Fig. 4.   Example of shielding determination (after algorithm improvement).
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Some parts of the cityscape change more frequently 
than others. Therefore, it is more efficient to system-
atically re-sense only key areas frequently than to 
uniformly re-sense the entire city. In such situations, 
the algorithm presented in this article could be used 
to efficiently select data to be collected. We will also 
study application-related issues, such as issues that 
may arise when the monitoring targets are widely 
spread or when position information contains errors.
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Fig. 6.   Vehicle-location patterns vs. processing times.
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1.   Roles and challenges with an ICT platform 
for connected vehicles

The role of an information and communication 
technology (ICT) platform for connected vehicles is 
to collect videos captured with onboard cameras and 
CAN (controller area network) data from connected 
vehicles, analyze them, and send the analysis results 
to the other vehicles to provide these vehicles with 
more information than they can obtain from their sen-
sors alone. This enables drivers to obtain information 
about their blind spots, preventing traffic accidents 
from occurring.

When connected vehicles are widely used, a large 
amount of data will be collected from a large number 
of such vehicles and may overwhelm the ICT plat-
form. Even in such situations, the ICT platform must 
be able to quickly notify vehicles of urgent informa-
tion, such as that relating to obstacles.

In the collaboration between the NTT Group and 
Toyota Motor Corporation, we conducted field trials 
for several use cases in which the ICT platform noti-

fies relevant vehicles about the processing results for 
the data it has collected.

The vertically distributed computing introduced in 
this article consists of the vertically distributed appli-
cation architecture and technology for dynamically 
selecting processing nodes we developed. The fol-
lowing sections describe the challenges each of these 
technologies addresses, solutions each provides, and 
verification results of the field trials.

2.   Vertically distributed computing

2.1   Vertically distributed application architecture
(1)  Obstacle detection and notification in the previ-

ous ICT platform
The previous ICT platform used in our collabora-

tion with Toyota was built on the lambda architecture 
[1, 2], in which stream (real-time) data processing 
and batch data processing are executed in parallel, 
allowing both quick results from stream processing 
and detailed results from batch processing to be made 
available (Fig. 1). To be able to execute obstacle 

Vertically Distributed Computing 
Technology
Kazuya Matsuo, Masaru Takagi, Ryota Nakada,  
and Koya Mori
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We developed a technology that quickly shares information found by a connected vehicle with other 

vehicles. For example, when a connected vehicle finds an obstacle on the road, the technology can trans-
mit information about it quickly to other vehicles. This quick notification is achieved by offloading part 
of the processing of the collected obstacle information to network-edge nodes and transmitting interim 
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because a large number of vehicles connect to a small number of network-edge nodes; thus, the volume 
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nected to a small number of network-edge nodes.
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detection and notification within 7 s, the platform 
estimated the type and location of any obstacle from 
each frame (image) by stream processing. However, 
the lambda architecture does not take into account the 
requirements for processing time. Therefore, a sys-
tem built on this architecture does not necessarily 
satisfy the requirement to execute obstacle detection 
and notification within 7 s. The actual processing 
time has been about 15 s.
(2) Vertically distributed application architecture

To solve this problem, we proposed an architecture 
that allows a processing-time threshold to be set in 
the lambda architecture. This new architecture is 
called a vertically distributed application architecture 
(Fig. 2). In this architecture, groups of processes are 
extracted from a series of processes in the order of 
their processing in such a way that the total process-
ing time does not exceed the threshold. The results of 
these extracted processes can be obtained by the cli-
ent. We revised the ICT platform to run on this archi-
tecture. In the revised ICT platform, object recogni-
tion is extracted from image-data processing, which 
consists of object recognition and object-location 
estimation. By doing so, connected vehicles can 
obtain information about the type of obstacle before 
the ICT platform completes the estimation of the 
obstacle location. To further increase the processing 
speed, the revised ICT platform offloads*1 object 
recognition to network-edge nodes*2, which are 
located closer to the relevant connected vehicles than 

the datacenter servers are. These nodes send obstacle 
information directly to the connected vehicles. In this 
architecture, obstacle detection and notification are 
executed in the following two stages (Fig. 3):

(i)  First notification: Information about the type 
of obstacle and the rough obstacle location 
(actually, the location of the connected vehicle 
that took the image of the obstacle) is sent to 
connected vehicles near the obstacle.

(ii)  Notification of details: The type of obstacle 
and more precise information about its loca-
tion, as obtained from the obstacle location 
estimation, are sent to connected vehicles near 
the obstacle.

(3) Field trial
In a field trial, the vehicle that took the image of the 

obstacle and the vehicle that received the obstacle 
information were the same. We measured the time 
between when the onboard camera captured the 
obstacle and when the vehicle received the obstacle 
information from the ICT platform. The results are 
shown in Table 1. The first notification was sent 
within 7 s. As mentioned above, the first notification 
only contained information about the approximate 
location of the obstacle because the precise location 
had not yet been calculated at this point. Since this 

Fig. 1.   Lambda architecture.
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computer is reduced by passing it to another computer.

*2 Network-edge node: A set of computers that are located at NTT’s 
base stations and central offices.
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approximate location was the location of the vehicle 
that took the image of the obstacle, it was several to 
ten meters away from the real obstacle location. 

However, since vehicles can move more than 10 m/s, 
we believe that providing information about the 
approximate obstacle location more than 10 s earlier 

Fig. 2.   Vertically distributed application architecture.
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than had been possible, even at the cost of location 
accuracy, would be extremely valuable for assisting 
safe driving.

2.2   Dynamic selection of processing nodes
(1)  Issues confronting the ICT platform after the 

adoption of the vertically distributed application 
architecture

The field trial showed that the vertically distributed 
application architecture made quick notification pos-
sible. However, the trial was conducted under condi-
tions such that the computing resources of the net-
work-edge nodes were not exhausted. When con-
nected vehicles are widespread, a large number of 
them may be connected to a small number of net-
work-edge nodes. The concentration of the process-
ing load for object recognition on these edge nodes 
may overwhelm their computing resources, making it 
impossible to send notifications quickly.

One way to distribute a load that would otherwise 
concentrate on a small number of computers is to 
offload the processing load to the most appropriate 
computers on the basis of the acceptable processing 
delay and remaining computer resources. Many such 
technologies have been proposed (e.g., [3]). Howev-
er, adopting only these conventional technologies 
cannot solve the above problem because vehicles can 
move more than 10 m/s, causing the surrounding 
conditions to change quickly from moment to 
moment, and the acceptable processing delay varies 
depending on these surrounding conditions. For 
example, if an obstacle is located on a blind curve, the 
risk of an accident is very high, and it is urgent to alert 
the vehicles near the obstacle. In contrast, if an obsta-
cle is on a road with good visibility, the risk of an 
accident is low, and it is less urgent to send obstacle 
notifications to the vehicles near the obstacle. Con-
ventional technologies do not take into account these 
client situations (i.e., the road situations mentioned 
above). Therefore, if the ICT platform’s load balanc-
ing is based on conventional technologies, obstacle 
notification may not be sent quickly even in situations 

where quick notification is absolutely needed, or it 
may be sent quickly even when there is no urgent 
need for it to be.
(2)  Overview of technology for dynamically select-

ing processing nodes
To address the issue mentioned above, we devel-

oped a technology for dynamically selecting process-
ing nodes. It adds to the conventional load balancing 
technology the ability to take into account the sur-
rounding conditions of the vehicles to be notified. 
This technology consists of the following three pro-
cesses:

(i)  Determine data-processing priority on the 
basis of the surrounding conditions of the 
vehicles to be notified (the part added in the 
proposed technology)

(ii)  Select the computers to which the target pro-
cessing is offloaded (conventional technolo-
gy)

(iii)  Execute the above offloading (conventional 
technology)

Various algorithms for Process (i) can be conceived 
for each use case. In the field trial, we adopted an 
algorithm designed for the obstacle detection and 
notification use case and verified its effectiveness.
(3)  Application of the technology for dynamically 

selecting processing nodes to the ICT platform
In the field trial, we adopted an algorithm that takes 

into account the requirement that connected vehicles 
moving at high speed without being able to detect the 
obstacle should be urgently notified. Specifically, the 
platform searches for connected vehicles in the vicin-
ity of the vehicle that transmitted the relevant onboard 
camera image. These are the targets for obstacle noti-
fication. The platform then determines whether it is 
urgent to notify these connected vehicles on the basis 
of the following two conditions (Fig. 4):

(i)  Whether the average speed of the target con-
nected vehicle exceeds the threshold.

(ii)  Whether the obstacle is visible from the driv-
er’s seat (to be more precise, whether the 
driver can see the location of the connected 
vehicle that sent the relevant obstacle-contain-
ing image when the object is first detected, or 
whether the driver can see the estimated loca-
tion of the obstacle when the obstacle has 
already been precisely detected and is being 
monitored).

To implement Condition (ii), the platform uses an 
algorithm similar to the selective vehicle-data-collec-
tion algorithm to determine whether the view of the 
obstacle is blocked. If quick notification is required, 

Table 1.    Results of the field trial of vertically distributed 
application architecture.

Processing time

From obstacle detection 
to first notification

From obstacle detection 
to notification of details

Average (s) Fastest (s) Average (s) Fastest (s)

4.574 4.092 9.772 9.212
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the processing priority is set to high. If quick notifica-
tion is not required, the processing priority is set to 
low. For in-between cases, the processing priority is 
set to medium. This priority setting is summarized in 
Table 2.

The next step is to determine, based on the priority 
setting just described, which computer should exe-
cute the object recognition. As with the conventional 
technology, our technology for dynamically selecting 
processing nodes monitors the remaining resources 
of each computer in the system and selects the appro-
priate computer on the basis of the remaining 
resources of each computer and the processing prior-
ity, as shown in Table 3. Finally, the platform offloads 
the object-recognition process to the selected com-
puter and the latter executes the process.

Figure 5 illustrates an example computer configu-
ration in the ICT platform and how the computers to 
which the target process is offloaded are selected. We 
assume that the network-edge node receives the 
onboard camera videos in the sequence of videos 1 to 
6 in the figure and that the object-recognition priority 
for each video is set as shown in the figure. Object 
recognition 4, which processes video 4, has low pri-

ority thus offloaded to a datacenter server. Object 
recognition 5 has medium priority. It is executed by 
the network-edge node because the above offloading 
has freed up its resources. This exhausts the comput-
ing resources at the network-edge node. Therefore, 
object recognition 6, which has medium priority, is 
offloaded to a datacenter server.
(4) Field trial

In the field trial, we examined how the number of 
onboard camera videos sent to the network-edge node 
affects the image-processing time. The results are 
shown in Fig. 6. The horizontal axis shows the num-
ber of videos received per second. The number of 
high-priority videos was varied between 1 and 3, and 
the number of medium-priority videos was varied 
between 1 and 9. The vertical axis shows the increase 
in processing time from a condition under which 
computing resources are sufficiently available. As 
can be seen from this figure, when no dynamic selec-
tion of processing nodes was used, the processing 
time at the network-edge node increased when more 
than three videos were received per second. In con-
trast, when dynamic selection of processing nodes 

Fig. 4.   Determining whether there are connected vehicles requiring quick notification.

Condition (i): Average moving speed

Whether the speed of the
surrounding vehicles exceeds
the threshold.

Condition (ii): Shielding

Whether there are vehicles
that cannot detect the
obstacle.

Cannot detect

Can detect

Table 2.    Setting of processing priority for images from 
onboard cameras.

(i) Average 
moving speed (ii) Shielding Priority

High
Yes High

No Medium

Low
Yes Medium

No Low

Table 3.    Selection of the processing computer based on 
priority.

Priority Processing computer

High Nearby network-edge node 
with remaining resources

Medium
Nearby computer with remaining 
resources (network-edge node 

or datacenter server)

Low Datacenter server



Feature Articles

73NTT Technical Review Vol. 20 No. 7 July 2022

Fig. 5.   Example of the dynamic selection of processing nodes.
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was used, the processing time at the network-edge 
node did not increase until nine*3 videos were 
received per second. This was because the network-
edge node processed only high-priority processes and 
other processes were offloaded to the datacenter. 
Because of this offloading, the processing time at the 
datacenter began to increase when six videos were 
received per second.

3.   Future outlook

Since computer technology is advancing daily, the 
computers in vehicles have become powerful enough 
to process the video from their onboard cameras. 
However, it is not assumed with the current vertically 
distributed computing technology that connected 
vehicles can process onboard camera videos. To 
make more effective use of the computing resources 
at both network-edge nodes and datacenters, we will 
study the extended use of the computing resources in 
connected vehicles.

In the obstacle detection and notification use case, 
an additional type of processing is required: when the 

platform detects an obstacle in the image from a con-
nected vehicle, it needs to determine whether the 
obstacle is being identified for the first time or has 
already been found in the image from another vehi-
cle. This is because, if the obstacle has already been 
found, the connected vehicles near the obstacle will 
have already been notified of the obstacle, and so 
there is less urgency. We are also studying technology 
for determining whether the objects detected by mul-
tiple sensors are identical [4].
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1.   Introduction

Dynamic maps [1] are being constructed to support 
automated driving and advanced navigation. They 
combine high-precision map information with traffic-
related information such as that about traffic controls 
and jams. Such traffic-related information is mapped 
on a dynamic map in real time, enabling map systems 
to detect road-traffic conditions and provide services, 
such as navigation, to optimize traffic flow. To con-
struct a dynamic map, an approach is needed to col-
lect, in real time, traffic-related information on roads 
across the country. Examples of such an approach are 
millimeter-wave radar [2] and traffic counters [3], 
which can be used to measure the volume of the flow 
of passing vehicles at fixed points, thus detect traffic 
jams. However, they must be installed at all locations 
where traffic jams are expected, so cannot cover a 
wide area. Another approach [4] involves using the 
smartphones of drivers to measure their vehicle 
speeds to detect traffic jams. This approach can cover 
a wide area but does not provide lane-specific resolu-
tion. In real-world traffic, lane-specific queues occur 
at various locations such as at the entrance to the 
parking lot of a commercial facility, at the exits of 
highways, or in turn lanes at intersections. When 

drivers who are new to an area encounter such a 
queue, they find it difficult to judge whether they 
need to stay in the queue to reach their destination. 
They may wait in a queue unnecessarily or avoid the 
queue when they actually need to join it, with the 
result that they must take a roundabout route to reach 
their destinations.

If lane-specific queues (traffic jams) and specific 
sections within a queue can be detected, it will be 
possible to provide unprecedented, advanced driving 
assistance, such as lane-specific navigation, that 
determines, on the basis of the driver’s destination, 
whether the driver should join or avoid a queue in a 
particular lane, enabling drivers to reach their desti-
nations without queuing up unnecessarily. This arti-
cle describes a technology that detects lane-specific 
traffic jams on the basis of video data and vehicle 
speeds obtained from connected vehicles [5].

2.   Lane-specific traffic-jam-detection technology

2.1   Definition
Taking a cue from the definition of a traffic jam 

applied to current services on general roads [6], we 
defined a lane-specific traffic jam as a line of traffic 
moving at 10 km/h or less. We also defined the  
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minimum length of a traffic jam as 42 m, which is 
1/10 the length defined in current services. In this 
article, the connected vehicle from which data are 
collected is referred to as an observation vehicle, and 
vehicles other than the observation vehicle that 
appear in images from the onboard camera mounted 
on the observation vehicle are referred to as other 
vehicles.

2.2   Processing overview
Figure 1 illustrates road conditions and an onboard 

camera image when a lane-specific traffic jam is 
encountered. From the onboard camera video taken 
with the observation vehicle, our technology counts 
other vehicles overtaken by the observation vehicle 
and that of other vehicles that passed in the opposite 
lane. The density of other vehicles can then be calcu-
lated from the speed of the observation vehicle and 
number of vehicles counted in each lane. A lane-
specific traffic jam can be detected from this density 
calculation. When a lane-specific traffic jam is 
detected, the timeframe used to evaluate the traffic 
jam is shifted, and the evaluation is repeated to esti-
mate the section where the lane-specific traffic jam is 
located and identify the vehicles at the front and back 
of the queue.

2.3   Processing flow
The front camera of the observation vehicle takes a 

video of the direction in which the vehicle is moving. 

From that video, the following processes are execut-
ed, as shown in Fig. 2.
(1) Detecting vehicles

The collected video is divided into frames, and an 
object-detection technology [7] is used to detect other 
vehicles in each frame. A detected vehicle is repre-
sented as a rectangle (detection rectangle) and labeled 
as a car, truck, or bus on the basis of the vehicle type 
(Fig. 3).
(2) Tracking

Since the relative positions between the observation 
vehicle and other vehicles change over time, the 
movements of other vehicles between frames are 
tracked and numbered. Next, a number is assigned to 
each of the other vehicles in each frame. The degree 
of similarity between the detected rectangle X in the 
current frame N and detected rectangle Y in the f-th 
frame back from N (i.e., Frame N – f) is evaluated 
using a similarity measure between two sets. This 
measure is called the intersection over union (IoU):

IoU = |X 

⊂

 Y |
|X 

⊃

 Y |
. (1)

A pair of rectangles with the largest IoU, i.e., the 
rectangles with the most common pixels, are judged 
to be the same vehicle. This makes it possible to track 
the trajectory of this vehicle.
(3) Counting overtaken vehicles

The same reference lines are drawn on each frame 
(Fig. 4). The trajectory of the other vehicle obtained 

Fig. 1.   Driver’s perspective when encountering a lane-specific traffic jam.
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by tracking is expressed as a relative movement vector. 
When the relative movement vector (of one of the 
other vehicles) from the road-perspective vanishing 
point to the outside of the frame intersects a reference 
line, it is determined that the observation vehicle has 
overtaken this other vehicle. In this manner, overtak-
en vehicles are counted.
(4) Calculating the travel distance

The distance traveled by the observation vehicle is 
calculated from the vehicle-speed information.
(5) Detecting a lane-specific traffic jam

Unfortunately, the threshold for the number of 
overtaken vehicles per evaluation timeframe is not 
clear. Therefore, we instead used the density of the 
overtaken vehicles (vehicle density) as a temporary 
solution because it is reasonable to think that the dis-
tance between vehicles is shorter in a traffic jam than 
in normally flowing traffic.

The threshold for the distance occupied by the 
vehicles in the adjacent lane (called the occupied 
distance threshold, Lθ) due to a traffic jam is calcu-
lated from the number of overtaken vehicles, the 

Fig. 2.   Processing flow.
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length, li, of an overtaken vehicle i, and the distance, 
τi, between vehicle i and the vehicle immediately in 
front of vehicle i. The occupied distance threshold is 
obtained as

Lθ = ∑
i

(li + τi).   (2)

Although vehicle length varies from vehicle to 
vehicle, we used the following vehicle lengths in our 
learning model for simplicity. The length of a car  
lcar = 4.8 m, that of a truck ltruck = 12.0 m, and that of 
a bus lbus = 12.0 m. The distance between two vehi-
cles, τ, is set to 5.0 m regardless of the vehicle type 
because at such a distance it is reasonable to think 
that the vehicles are packed together but that each 
vehicle is far enough from the vehicle in front of it to 
be able to avoid a collision by braking suddenly. Note 
that the upper limit of traffic speed for the definition 
of a traffic jam is 10 km/h (2.778 m/s). At this speed, 
there is a sufficient stopping distance (brake reaction 
distance + braking distance) between vehicles. The 
upper limit of the traffic speed for the definition of 
minor congestion is 20 km/h. At this speed, there is 
not a sufficient stopping distance between vehicles. 
The reaction time was set to 0.75 s, which is consid-
ered a typical value, and the coefficient of friction 
was set to 0.7 assuming a dry road surface.

Brake reaction distance:  2.778 m/s × 0.75 s 
= 2.08 m

Braking distance:  (10 × 10) ÷ (254 × 0.7)  
 0.56 m

Let x, y, and z respectively denote the number of cars, 
number of trucks, and number of buses that were 
overtaken. Then, the occupied length is

Lθ = xlcar + yltruck + zlbus + (x + y + z)τ. (3)

If this occupied distance is longer than the observa-
tion vehicle’s travel distance D, i.e., if

Lθ ≥ D,  (4)

the distance between vehicles is shorter than the 
defined threshold, it is determined to be a lane-specif-
ic traffic jam.

2.4   Other new features
To improve detection accuracy, it is important to 

prevent object-detection failures caused by backlight-
ing or reflections. For this purpose, a Kalman filter is 
used to predict where the other vehicles are heading. 
To determine whether other vehicles are running in 
the same direction as the observation vehicle or run-
ning in the opposite lane, our technology examines 
whether the video shows the front or back of a vehi-

cle. If there are many vehicles facing towards the 
camera, the system determines that the other vehicles 
are in the opposite lane and reverses the front and last 
vehicles.

3.   Field trials

3.1   Overview of the evaluation
The accuracy of our lane-specific traffic-jam-detec-

tion technology was evaluated using a test vehicle—
running in the Odaiba district, Minato Ward, Tokyo—
as the observation vehicle. The vehicle ran on the two 
routes indicated with the solid red line and dotted 
blue line in Fig. 5. Preliminary investigations indi-
cated that there is a high probability of naturally 
occurring lane-specific traffic jams on these routes. A 
camera was installed in the upper front of the obser-
vation vehicle. The resolution of the video from this 
camera was 1920 × 1080 pixels. The video was taken 
at 10 fps and saved. The location information 
expressed in latitude and longitude was obtained at 
one-second intervals using GPS (Global Positioning 
System). The vehicle’s speed was determined on the 
basis of the change in the vehicle’s location over time.

3.2    Evaluation of accuracy in detecting lane-spe-
cific traffic jams

This section describes the accuracy evaluation con-
ducted using 48 videos (each 60 s long) for situations 
in which the presence of a lane-specific traffic jam 
was visually confirmed.
(1) Visual check

We decided that our technology must be able to 
detect any lane-specific traffic jam with a length of 42 
m or longer. We manually extracted video scenes in 
which the observation vehicle continuously overtook 
a series of vehicles, such as three cars and one truck. 
The data in these visually verified scenes were treated 
as the correct data.
(2) Accuracy evaluation

Table 1 shows a confusion matrix comparing the 
results of the visual check and the application output. 
Precision (true positive (TP)/(TP+ false positive 
(FP))) was 89.7%. The main factor for an FP was the 
effect of vehicles in parking lots or other premises. 
This applied to three cases. The main factor for a false 
negative (FN) was object-detection errors caused 
when some vehicles in the opposite lane were hidden 
behind guardrails or other objects, even though a 
lane-specific traffic jam was present in that lane. This 
applied to four cases. Factors common to both FP and 
FN included object-detection errors, errors caused 



Feature Articles

NTT Technical Review 80Vol. 20 No. 7 July 2022

because we fixed the occupied distance of other 
vehicles, and inaccurate travel distance of the obser-
vation vehicle due to errors in positional information.

3.3    Evaluation of accuracy in estimating the front 
vehicle in a queue

We conducted an additional evaluation for 70 TP 
scenes, scenes for which both the visual check and 

application output indicated the presence of a lane-
specific traffic jam. We compared the frame in which 
the visual check determined that the observation 
vehicle overtook the front vehicle with the frame in 
which the application did the same. The comparison 
results are shown in Fig. 6. The average difference in 
time between the two frames was 0.57 s, the median 
was 0 s, and the maximum was 4.1 s. The speed limit 

Fig. 5.   Travel routes.
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on these routes is 50 km/h. With the distance between 
cars taken into account, the time required to overtake 
a car is approximately 0.7 s. Therefore, the average 
difference of 0.57 s is acceptable. We examined 14 
cases in which the error was 1.6 s or more and identi-
fied two main factors that caused the large error. The 
first was that there were errors in the positional infor-
mation and, as a result, the observation vehicle’s 
travel distance was not calculated accurately (the 
distance calculation process was either continued or 
interrupted). This applied to nine cases. The second 
factor was that cars were incorrectly recognized as 
trucks or vice versa. This applied to three cases.

4.   Conclusion

We developed a lane-specific traffic-jam-detection 
technology. It uses video data, vehicle speed, and 
location information that can be collected from a 
single connected vehicle to determine if there is a 
traffic jam in each lane and, if there is, identify the 
front and the last vehicles in the traffic queue. We 
conducted field trials, in which the accuracy of traf-
fic-jam detection and the estimation of the vehicle at 

the front of a queue were evaluated on the basis of the 
video from a front-facing onboard camera and posi-
tional information. We plan to improve the accuracy 
of our technology and study methods for identifying 
the causes of lane-specific traffic jams.
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1.   Issues regarding detection of lane-specific 
traffic jams

NTT Smart Data Science Center aims to provide 
advanced driving support and optimize traffic flow by 
detecting lane-specific traffic jams using video analy-
sis, thus providing more detailed traffic-jam informa-
tion faster than conventional services. To identify the 
exact location and length of a lane-specific traffic 
jam, dashcam videos of connected vehicles running 
in the lane adjacent to the congested lane are col-
lected into the cloud where image processing [1] is 
executed. This process presents a problem in that a 
large amount of communication is required to collect 
the video data and a large amount of computation is 
required to analyze the data. To solve this problem, 
NTT Smart Data Science Center developed a technol-
ogy for calculating the degree of suddenness of the 
increase or decrease in the latest number of vehicles 
compared with the number of vehicles in the ordinary 
state, which is quantified and called the suddenness 
index for aggregation values, or just suddenness 
index, SI [2]. It uses controller area network (CAN) 
data, which feature a small data size, and identifies 

roads (or meshes* on a map), the videos of which 
need to be collected and analyzed with high priority. 
By collecting and analyzing only high-priority vid-
eos, it is possible to reduce the amount of both com-
munication and computation.

2.   Which roads have high priority for 
video analysis?

Compared with traffic jams in areas where traffic 
volumes are predictable, such as areas with little 
change in traffic volume or where traffic jams occur 
periodically, lane-specific traffic jams that occur 
unexpectedly and suddenly are more likely to trigger 
new accidents. Therefore, it is important to provide 
advanced driving assistance in areas that are prone to 
such sudden lane-specific traffic jams.

Traffic jams in the former category include those 
that occur on arterial roads and right/left-turn lanes, 
which become congested during the morning and 
evening rush hours, and at entries to commercial 

Technology for Calculating 
Suddenness Index for Aggregated 
Values
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Kouhei Mori, and Masato Kamiya

Abstract
We developed a technology for calculating the suddenness index for aggregated values to reduce the 
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facilities that are crowded on weekends and holidays. 
Such traffic jams can be predicted on the basis of 
historical data, and the video-analysis results of past 
traffic jams have already been accumulated. There-
fore, the analysis of videos of such areas has low 
priority, especially when remaining server resources 
are scarce.

Lane-specific traffic jams in the latter category 
include those caused by an extreme reduction in traf-
fic capacity on the road due to an accident or vehicle 
breakdown, those caused by the opening of a new 
commercial facility, and those caused by changes in 
people’s daily habits, such as a sudden rise in demand 
for drive-through services due to the COVID-19 pan-
demic. Such traffic jams are difficult to predict from 
historical data. Therefore, it is a matter of high prior-
ity to understand the traffic situation in such cases 
through video analysis. By giving high priority to 
lane-specific traffic jams that occur unexpectedly, it 
is possible to reduce the amount of both communica-
tion and computation required.

3.   Issues with detecting sudden traffic jams

The issues with detecting sudden traffic jams are 
summarized below.

First, it is necessary to use, as input data, informa-
tion that is readily available and can be analyzed 
without incurring a high cost in communication and 
computation. The proposed technology collects CAN 
data from connected vehicles and uses the number of 
vehicles in each mesh as input data. It is necessary to 
take note of the facts that the reliability of data on the 
number of vehicles is low and will remain so until 
connected vehicles become widespread and that it is 
necessary to reduce the amount of computation 
needed for detecting a sudden traffic jam to improve 
real-time performance.

To be able to identify roads encountering sudden 
traffic jams, the number of vehicles in the ordinary 
state (normal traffic without sudden congestion) 
should be learned from data on the number of vehi-
cles in each mesh in each hour segment and the time 
series of that data. In doing so, it is important to take 
into account the facts that the ordinary state varies 
from road to road and that the number of vehicles 
changes periodically, for example, depending on the 
day of the week, hour of the day, and combination of 
the two.

4.   Technology for calculating suddenness index

Our technology can quickly narrow down the spot 
where a sudden traffic jam is occurring. The input 
data it uses are the number of vehicles in each mesh, 
which is collected with AxispotTM [3] based on CAN 
data. This technology can detect the moment when 
the number of vehicles suddenly increases in com-
parison with the number of vehicles in the ordinary 
state.

The flow for calculating SI is shown in Fig. 1. To 
take multiple types of periodicity into account, the 
technology calculates the ordinary state (hereafter, 
referred to as statistical information) of each mesh 
from various data: the average, standard deviation 
and time-scale reliability of the number of vehicles in 
each mesh, which are aggregated for the entire peri-
od, by the hour of the day, day of the week, and com-
bination of the two (these are collectively called time 
granularity). Time-scale reliability is also calculated 
to determine, from among the results for different 
time granularities, which should be given high prior-
ity. This time-scale reliability is designed in such a 
way that it is low when the density of connected 
vehicles is low; thus, the number of vehicles on which 
information is obtained is excessively small relative 
to the number of lanes. Specifically, it is calculated on 
the basis of the number of times that the number of 
vehicles on which information is obtained increases 
above a defined threshold. When the latest number of 
vehicles is input, SI is calculated. The input data are 
the latest number of vehicles (by mesh and by time) 
and statistical information calculated in advance. 
First, the suddenness index by time granularity (SIT)  
is calculated by comparing the latest number of 
vehicles with the statistical information for each time 
granularity. The SIT is calculated using a method 
often used in outlier tests [4], as shown in Fig. 1, 
where C(t, m) is the number of vehicles passing 
through mesh m at time t, μ(T, t, m) is the mean num-
ber of vehicles at t, at m for time granularity T, and 
σ(T, t, m) is the standard deviation of the same. The 
SIT is positive if the latest number of vehicles is 
greater than the mean and is negative if it is smaller. 
The larger the standard deviation of the population, 
the smaller SIT is. The SIT is high when a large number 
of vehicles suddenly accumulate in a place where the 
number of vehicles is normally small and varies little.

Next, the SIT for each time granularity is multiplied 
by the time-scale reliability. The weighted sum of the 
SIT values for all time granularities is the final output, 
called the SI. If the value is positive, the number of 
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vehicles is higher than usual at many high-reliability 
time granularities. This enables flexible selection of 
the mesh to study. For example, if the server that col-
lects and processes video has sufficient surplus 
resources, the center and left-most meshes of the 
chart in the right-hand column in Fig. 1 can be select-
ed. If it does not, only the left-most mesh, which has 
the highest SI, can be selected.

To observe deviations from the ordinary state, it is 
necessary to know the ordinary state. It has been com-
mon to use a complex model, such as Auto Encoder 
[5], to learn the ordinary state. We adopted a different 
approach for the lane-specific traffic-jam-detection 
use case. To minimize the amount of computation and 
computing time required for prioritizing video-pro-
cessing-based traffic-jam detection, multiple aggre-
gation time granularities are used, and whether the 
number of vehicles is greater than in the ordinary 
state is quantified for each aggregation granularity. A 
benefit of this approach is that it minimizes the com-
putation time while minimizing the negative effects 
when the reliability of the data is low.

5.   Evaluation of accuracy and performance

Since connected vehicles are still in the early-
adoption stage, we believed that a reasonable method 
for evaluating the accuracy and performance of the 
proposed technology with real data was to use Global 

Positioning System (GPS) logs. We calculated SI 
using GPS data collected from 10 taxis every 10 sec-
onds because the occurrence of a traffic jam would 
reduce vehicle speeds, thus increase the number of 
GPS logs per unit of time.

A summary of the data used is as follows:
• Mesh size: 110 m2

• Number of GPS logs: 2,757,003
• Number of meshes: 47,146
• Number of time frames: 9,258
•  Total number of all meshes in the aggregation: 

1,016,024
•  Period: November 27, 2017–January 31, 2018
Figure 2 shows an example of the SI calculation for 

a specific mesh for which the highest SI was pro-
duced. The SI values are shown in red and the number 
of logs in blue. When the number of logs (in blue) 
rose suddenly at (1), the SI produced with the pro-
posed technology (in red) also increased at (1). This 
indicates that the technology can be used to detect a 
sudden traffic jam. When traffic jams occurred 
repeatedly, as shown with the blue dots at (2) and (3), 
the SI values shown with the red dots at (2) and (3), 
decreased. This indicates that the use of SI gradually 
eliminates recurring traffic jams of similar magnitude 
from the target for traffic-jam detection.

Next, we evaluated whether SI is a reliable indicator 
for detecting sudden traffic jams. We visually detect-
ed 121 lane-specific traffic jams in videos taken by 

Fig. 1.   Calculation method for SI.
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taxis, labeled each of them as either sudden or not, 
and checked whether SI is effective for identifying 
sudden traffic jams. From the taxi data collected over 
a period of 66 days, we used the data from the first 33 
days as training data. We then checked whether SI 
could identify the 7 sudden traffic jams out of the 14 
traffic jams that occurred during the remaining 33 
days. The results are listed in Table 1. The aggrega-
tion time at which SI became greater than 0 was con-
sidered the moment when a sudden traffic jam 
occurred. The table also shows that, even if 82.2% of 
the aggregation data taken around Odaiba (the district 
where the demonstration experiment was conducted) 
were removed, sudden traffic jams were still identi-
fied with a probability of 100%. In contrast, SI identi-
fied only 42.9% of chronic traffic jams, which are not 
targeted traffic jams in this use case.

This technology was implemented on the platform 

used in the field trials, which is presented in another 
article in this issue. We evaluated the proposed tech-
nology in this setting. We examined what reduction in 
computation time can be achieved if the number of 
processed meshes (meshes for which video is pro-
cessed) is reduced by 80% using SI. We examined 
this effect with different numbers of meshes. The 
results are shown in Fig. 3. As the number of meshes 
increased, the greater the effect of decreasing the 
number of processed meshes on reducing computing 
time. When the number of meshes was 400 or 800, 
the computing time decreased by 70% when using SI. 
However, the time required to compute SI remained 
as short as 0.5 seconds even with 800 meshes.

6.   Future outlook

We developed a technology for calculating the  

Fig. 2.   Example of calculating SI for aggregate values.
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Table 1.   Identification rate of sudden traffic jams.

Effect of
aggregation on
cost saving
(Odaiba)   

Effect of
aggregation on
cost saving
(Overall)   

Rate of
identifying
meshes with
traffic jams
(Odaiba)   

Rate of
identifying
sudden traffic
jams
(Odaiba)   

Rate of
identifying
chronic traffic
jams
(Odaiba)   

82.2% reduction
(1,187/1,444) 

72.6% reduction
(344,019/473,723) 

69.2% identified
(9/13)

100% identified
(7/7)

42.9% identified
(3/7)
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suddenness index for aggregated values, which can 
quickly identify sudden increases in time-series data 
with a small amount of computation. We plan to use 
this technology to detect or predict sudden traffic 
jams on expressways caused by accidents on the basis 
of information about previous traffic jams on express-
ways.
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Fig. 3.   Effect of using SI for aggregate values on reducing computing time on the platform.
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1.   Introduction

Humans can estimate the depth and bokeh (shallow 
depth-of-field (DoF)) effects from a two-dimensional 
(2D) image on the basis of their experience and 
knowledge. However, computers have difficulty in 
doing this because they logically cannot have such 
experience and expertise. However, considering that, 
in the future, robots will be able to move around us 
and the real and virtual worlds will be integrated, it 
will be necessary to create computers that can act or 
present information on the basis of 3D data such as 
depth and bokeh information. Considering that a 
photo is one of the most frequently used forms of data 
for recording or saving information, understanding 
3D information from 2D images will be valuable for 
various 3D-based applications to reduce installation 
cost because it enables using easily available 2D 
images as input.

Three-dimensional understanding from 2D images 

has been actively studied in computer vision and 
machine learning. A successful approach is to learn 
the 3D predictor using direct or photometric-driven 
supervision after collecting pairs of 2D and 3D data 
[1] or sets of multi-view images [2]. This approach 
demonstrates good prediction accuracy due to the 
ease of training. However, collecting pairs of 2D and 
3D data or sets of multi-view images is not always 
easy or practical because they require special devices 
such as a depth sensor or stereo camera.

To reduce the data-collection costs, our team is 
investigating a fully unsupervised approach for learn-
ing 3D representations only from images without any 
additional supervision. In the study published in the 
34th IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR 2021) [3], I introduced a 
new deep generative model called aperture rendering 
generative adversarial network (AR-GAN), which 
can learn depth and bokeh effects from standard 2D 
images such as those on the web. Focus cues that are 
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Humans can estimate the depth and bokeh effects from a two-dimensional (2D) image on the basis of 

their experience and knowledge. However, computers have difficulty in doing this because they logically 
cannot have such experience and expertise. To overcome this limitation, a novel deep generative model 
called aperture rendering generative adversarial network (AR-GAN) is discussed. AR-GAN makes it 
possible to control the bokeh effects on the basis of the predicted depth by incorporating an optical 
constraint of a camera aperture into a GAN. During training, AR-GAN requires only standard 2D images 
(such as those on the web) and does not require 3D data such as depth and bokeh information. Therefore, 
it can alleviate the application boundaries that come from the difficulty in collecting 3D data. This 
technology is expected to enable the exploration of new possibilities in studies on 3D understanding.
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inherent in photos but had not been actively studied in 
previous deep generative models were considered. 
On the basis of this consideration, our team devel-
oped AR-GAN to incorporate aperture rendering 
(particularly light field aperture rendering [4]) into a 
GAN [5] (a variant of deep generative models). This 
configuration allows synthesizing a bokeh image on 
the basis of the predicted depth and all-in-focus (deep 
DoF) image using a camera with an optical constraint 
on the light field.

The rest of this article is organized as follows. In 
Section 2, I first review two previous studies on 
which AR-GAN is based: GAN [5] and light field 
aperture rendering [4]. In Section 3, I explain AR-
GAN, which is the main topic of this article. In Sec-
tion 4, I discuss the experiments on the effectiveness 
of AR-GAN. In Section 5, I present concluding 
remarks and areas for future research.

2.   Preliminaries

2.1   GAN
GANs [5] can mimic training data without defining 

their distribution explicitly. This property enables 
GANs to be applied to various tasks and applications 
in diverse fields.

As shown in Fig. 1, a GAN is composed of two 
neural networks: a generator G(z) and discriminator 
D(x). These two networks are optimized through a 
two-player min-max game using an objective func-
tion LGAN:

LGAN =  𝔼xr~pr(x)[logD(xr)] 
+ 𝔼z~p(z)[log(1 − D(G(z)))],

where, given a latent variable z~p(z), a G(z) attempts 
to generate an image xg = G(z) that can deceive a D(x) 

by minimizing LGAN. By contrast, the D(x) attempts 
to distinguish a generated image xg from a real image 
xr~pr(x) by maximizing LGAN. Superscripts r and g 
denote the real and generated data, respectively. 
Through this adversarial training, a generative distri-
bution pg(x) reaches close to a real distribution pr(x).

2.2   Light field aperture rendering
Light field aperture rendering [4] is a module that 

simulates an optical phenomenon (particularly 
bokeh) on a camera aperture in a differentiable man-
ner. Note that such a differentiable property is neces-
sary for deep neural networks (DNNs), such as a G(z) 
(discussed in Section 2.1), to update the parameters 
through the backpropagation commonly used for 
DNNs.

More concretely, as shown in Fig. 2, the rendering 
provides an aperture renderer R(xd, d) that synthe-
sizes a bokeh image xs(r) from an all-in-focus image 
xd(r) and depth map d(r). Here, r indicates the spatial 
coordinates of the light field on the image plane.

I explain the details in a step-by-step manner. First, 
a depth map d(r) is expanded into a depth map for 
each view in the light field, i.e., m(r, u), using a neu-
ral network T:

m(r, u) = T(d(r)),

where u indicates the angular coordinates of the light 
field on the aperture plane. Subsequently, an all-in-
focus image xd(r) is warped into an image for each 
view of the light field, i.e., l(r, u), using the predicted 
m(r, u):

l(r, u) = xd(r + um(r, u)).

From this formulation, the left-side images in the 
light field (5 × 5 images in Fig. 2) represent images 

Fig. 1.   Architecture of GAN.
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when viewing objects from the left side, and the 
right-side images represent vice versa.

Finally, the l(r, u) is integrated using an aperture 
a(u) (an indicator that represents the disk-shaped 
camera aperture and takes ones for views within the 
aperture (indicated with white in Fig. 2) and zeroes 
otherwise (indicated with black in Fig. 2)) to render a 
bokeh image xs(r):

xs(r) = ∑ua(u) l(r, u).

When an object is on the focal plane, the object’s 
position is consistent regardless of the l(r, u). There-
fore, no bokeh occurs when the l(r, u) is integrated by 
the above equation. By contrast, when an object is 
separate from the focal plane, the object’s position 
varies depending on the l(r, u). Thus, bokeh occurs in 
this case. Hereafter, r and u are omitted for simplicity 
except in necessary cases.

3.   AR-GAN

3.1   Problem statement
The problem statement is clarified before explain-

ing the details of AR-GAN. As described in Section 
1, AR-GAN is used to learn depth and bokeh effects 

only from images without additional supervision. In 
this setting, it is not easy to construct a conditional 
generator that directly predicts the depth or bokeh 
effects from an image due to the absence of pairs of 
2D and 3D data or sets of multi-view images. There-
fore, as an alternative, the aim is to learn an uncondi-
tional generator that can generate a tuple of an all-in-
focus image xd

g, depth map dg, and bokeh image xs
g 

from a latent variable z.
AR-GAN uses focus cues as a clue for addressing 

this challenge. When the training images are highly 
biased in terms of bokeh effects (e.g., all training 
images are all-in-focus), it is difficult to gain focus 
cues from the images. Therefore, it is assumed with 
AR-GAN that the training dataset includes various 
bokeh images. Note that this assumption does not 
mean that the training dataset contains sets of differ-
ent bokeh images for each instance. Under this 
assumption, AR-GAN learns the generator in a wis-
dom of crowds approach.

3.2   Model architecture
The processing flow of the AR-GAN generator is 

presented in Fig. 3. Given a latent variable z, the AR-
GAN generator generates an all-in-focus image  

Fig. 2.   Processing flow of light field aperture rendering.

Corresponding
depth map
m (r, u)

u

Aperture
a (u)

Light field
l (r, u) Bokeh

image
xs(r )

Warp
T

All-in-focus
image
xd(r )

Depth map
d (r )

Fig. 3.   Processing flow of AR-GAN generator.

z

u

Aperture
a (u)

Light field
l g(r, u) Bokeh

image
x g

s(r )
Warp

T

All-in-focus
image
x g

d(r )

Depth map
d g(r )

Aperture renderer
R (x g

d,d g)

Latent
variable

Image
generator

Gx(z)

Depth
generator

Gd(z)



Regular Articles

92NTT Technical Review Vol. 20 No. 7 July 2022

xd
g = Gx(z) and depth map dg = Gd(z) using an all-in-

focus image generator Gx(z) and a depth generator 
Gd(z), respectively. Subsequently, the aperture ren-
derer R(xd, d) (explained in Section 2.2) synthesizes 
a bokeh image xs

g = R(xd
g, dg). Using this configura-

tion, AR-GAN makes it possible to generate a tuple 
of an all-in-focus image xd

g, depth map dg, and bokeh 
image xs

g using a camera with an optical constraint on 
the light field.

3.3   Training method
As shown in Fig. 1, a typical GAN applies a D(x) to 

the final output of the G(z) (i.e., xs
g in the case of the 

AR-GAN generator). However, in the AR-GAN gen-
erator, three modules, i.e., Gx(z), Gd(z), and R(xd

g, dg) 
are trainable. Therefore, they compete for roles if 
there is no constraint. For example, they can fall into 
an extreme solution (e.g., R(xd

g, dg) learns strong 
bokeh effects and Gx(z) learns over-blurred images).

To alleviate this problem, AR-GAN is trained using 
DoF mixture learning. Figure 4 illustrates the com-
parison between the standard GAN learning and DoF 
mixture learning. In the standard GAN learning 
shown in Fig. 4(a), the G(z) attempts to cover the 
overall real image distribution using generated imag-
es without any constraint. Consequently, it cannot 
determine to make a generated image xg close to a 
real all-in-focus image xd

r or a real bokeh image xs
r 

(indicated with question marks “?” in Fig. 4(a)).
By contrast, as shown in Fig. 4(b), in DoF mixture 

learning, the AR-GAN generator attempts to repre-
sent the real image distribution using generated 
images, the bokeh degrees of which are adjusted by a 
scale factor s. More concretely, the GAN objective 
function presented in Section 2.1 is rewritten as fol-
lows:

LAR−GAN =  𝔼xr~pr(x)[logD(xr)] + 𝔼z~p(z),s~p(s) 

[log(1 − D(R(Gx(z), sGd(z))))],
where s ∈ [0, 1]; when s = 0, an all-in-focus image xd

g 
is generated, whereas when s = 1, a bokeh image xs

g is 
rendered. Intuitively, the aperture renderer R(xd

g, dg), 
which has an optical constraint on the light field, 
functions as a bokeh image prior. This prior encour-
ages a generated all-in-focus image xd

g to approxi-
mate a real all-in-focus image xd

r (indicated by the 
“All-in-focus image” in Fig. 4(b)) and promotes a 
generated bokeh image xs

g to mimic a real bokeh 
image xs

r (indicated by the “Bokeh image” in Fig. 
4(b)). Consequently, dg, which connects xd

g and xs
g, is 

also optimized. In this manner, the DoF mixture 
learning allows optimizing Gx(z), Gd(z), and R(xd

g, dg) 
together under an optical constraint.

A remaining challenge specific to unsupervised 
depth and bokeh learning is the difficulty in distin-
guishing whether blur occurs ahead of or behind the 
focal plane. For this challenge, on the basis of the 
observation that the focused image tends to be placed 
at the center of a photo, AR-GAN uses the center 
focus prior, which encourages the center to be 
focused while promoting the surroundings to be 
behind the focal plane. In practice, this prior is only 
used at the beginning of training to determine the 
learning direction.

4.   Experiments

4.1   Image and depth synthesis
The previous AR-GAN study [3] demonstrated the 

utility of AR-GAN using various natural image data-
sets, including flower (Oxford Flowers [6]), bird 
(CUB-200-2011 [7]), and face (FFHQ [8]) datasets. 

Fig. 4.   Comparison between standard GAN learning and DoF mixture learning.
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The implementation details are omitted because of 
space limitations. See that AR-GAN study [3] if 
interested in the implementation details.

Figure 5 shows examples of generated images and 
depth maps. AR-GAN succeeds in generating a tuple 
of an all-in-focus image (upper left), bokeh image 
(upper right), and depth map (lower left) in every set-
ting. For example, in Fig. 5(a), the background is 
blurred while the foreground is unchanged in bokeh 
conversion (the conversion from the upper left to 
upper right). In depth prediction (the transformation 
from the upper left to lower left), the depth map 
(lower left) corresponding to the image (upper left) is 
successfully predicted. A light color indicates the fore-
ground while a dark color indicates the background. 
Recall that the training data are only 2D images, and 
depth and bokeh effects are not provided as supervi-
sion. In this manner, learning depth and bokeh effects 
only from 2D images is the main strength of AR-GAN.

4.2    Application to bokeh rendering and depth 
prediction

As discussed in Section 3.1, AR-GAN learns an 
unconditional generator that generates a tuple of an 
all-in-focus image xd

g, depth map dg, and bokeh image 
xs

g from a latent variable z. Therefore, it cannot be 
directly used to convert a given image to the bokeh 
image or depth. However, AR-GAN can generate sets 
of all-in-focus and bokeh images or sets of all-in-
focus images and depth maps artificially and abun-
dantly by randomly changing the latent variable. By 
using these data, we can learn a bokeh renderer (i.e., 
a converter that converts an all-in-focus image to a 
bokeh image) and depth predictor (i.e., a predictor 
that predicts a depth map from an image) in a super-
vised manner.

Figure 6 shows example results obtained with the 
bokeh renderer and depth predictor mentioned above. 
A photo I took was used as an input (Fig. 6(a)). The 

Fig. 5.   Examples of generated images and depth maps.
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bokeh renderer synthesizes a bokeh image (Fig. 6(b)), 
and the depth predictor predicts a depth map from the 
input image (Fig. 6(c)). Similar to the results in 
Fig. 5, the background is blurred while the fore-
ground remains unchanged in the bokeh conversion 
(the conversion from (a) to (b)), and the depth map 
corresponding to the input image is predicted in the 
depth prediction (the transformation from (a) to (c)).

Note that the data required for training the bokeh 
renderer and depth predictor are only the data gener-
ated by AR-GAN, and no additional data are needed. 
That is to say, in this setting, we can learn a bokeh 
renderer and depth predictor in a fully unsupervised 
manner, similar to AR-GAN. This is a strength of an 
AR-GAN-based approach.

5.   Conclusion and future work

This article explained AR-GAN, which is a new 
deep generative model enabling the unsupervised 
learning of depth and bokeh effects only from natural 
images. Since we live in the 3D world, human-orient-
ed computers are expected to understand the 3D 
world. For this challenge, AR-GAN is effective 
because it can eliminate the requirement of 3D data 
during training. AR-GAN is expected to enable the 
exploration of new possibilities in studies on 3D 
understanding.

AR-GAN will also be useful for many applications 
in various fields such as environmental understanding 
in robotics, content creation in advertisements, and 
photo editing in entertainment. For example, AR-
GAN can learn a data-driven model from collected 
images. Using this strength, a data-driven bokeh ren-
derer reflecting a famous photographer can be con-
structed if we can collect his/her photos. Thus, AR-
GAN can be used to obtain more natural and impact-
ful bokeh images and enrich the functionality of 
photo-editing applications (e.g., smartphone applica-

tions for social media).
Future work includes further improvement of depth 

and bokeh accuracy since unsupervised learning of 
depth and bokeh effects is an ill-posed problem, and 
there is room for improvement. Our team is tackling 
this challenge, and my latest paper [9] has been 
accepted to CVPR 2022. Due to space limitations, 
details of this are omitted. Please check my latest 
paper [9] if interested in the details.
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1.   Introduction

From January 10 to 17, 2022, the 9th meeting of the 
Telecommunication Standardization Advisory Group 
(TSAG) of the International Telecommunication 
Union - Telecommunication Standardization Sector 
(ITU-T) was held remotely with 206 participants 
from 49 countries. From Japan, the Ministry of Inter-
nal Affairs and Communications served as the Head 
of Delegation for Japan, with 15 representatives from 
Japanese companies and organizations (National 
Institute of Standards and Technology (NICT), NTT, 
KDDI, NEC, The ITU Association of Japan, Hitachi, 
Mitsubishi, and the Telecommunication Technology 
Committee (TTC)).

2.   Outline of the TSAG meeting

The 9th TSAG meeting consisted of plenary ses-
sions for overall deliberation and Rapporteur Group 
(RG) meetings for detailed examination of each 
issue, with two online sessions per day. As this was 
the final TSAG meeting of the study period (2017–
2021) for the World Telecommunication Standardiza-
tion Assembly (WTSA-20), the closing plenary was 
allocated for two days on January 14 and 17.

The plenary sessions were led by TSAG Chair 
Bruce Gracie (Ericsson, Canada), and the RG meet-
ings were led by four Rapporteurs: RG on Work Pro-
gramme (RG-WP), RG on Working Methods (RG-
WM), RG on Strengthening Collaboration (RG-SC), 
and RG on Review of Resolutions (RG-RR). RG on 
Standardization Strategy (RG-StdsStrat) had com-
pleted the discussion of major issues, and there was 
no discussion at this meeting. From Japan, Ms. Miho 
Naganuma (NEC) participated as an RG-WP Rap-
porteur.

The online conference was held at 13:00–16:00 
Geneva time (21:00–24:00 Japan time), with 1 ses-
sion of 90 minutes and 2 sessions a day as the core 
time, taking into account the time difference between 
participants.

We used Zoom for this meeting as a remote meeting 
tool. The ITU has its own remote meeting tool, 
MyMeetings, which is built on open source, but for 
large meetings with more than 200 participants, 
Zoom will be used for the time being. From the view-
point of improving accessibility, captioning in Eng-
lish was provided at all meetings and simultaneous 
interpretation in six official languages of the United 
Nations was provided at plenary sessions in core 
time.

Report of the 9th ITU-T TSAG 
(Telecommunication Standardization 
Advisory Group) Meeting
Noriyuki Araki

Abstract
The 9th meeting of the Telecommunication Standardization Advisory Group (TSAG) of the Interna-

tional Telecommunication Union - Telecommunication Standardization Sector (ITU-T), the final meet-
ing of the study period (2017–2021) for the World Telecommunication Standardization Assembly 
(WTSA-20), was held in an online conference from January 10 to 17, 2022. The 4th Inter-regional Meet-
ing, a preparatory meeting for WTSA-20, was also held on January 6 before the TSAG meeting. This 
article describes the main results of the 9th TSAG meeting.
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3.   Inter-regional Meeting for WTSA

On January 6, the week before the 9th TSAG meet-
ing, the Inter-regional Meeting (IRM), a preparatory 
meeting for WTSA, was held by representatives of 
six regional telecommunications organizations (the 
Asia-Pacific Telecommunity (APT), League of Arab 
States/Arab Standardization Team, African Telecom-
munications Union (ATU), European Conference of 
Postal and Telecommunications Administrations 
(CEPT), Inter-American Telecommunication Com-
mission (CITEL), and Reginal Commonwealth in the 
Field of Communications (RCC)), and a summary 
report was given to the TSAG plenary. Sixty-one pro-
posals for revision or withdraw of existing WTSA 
resolutions, 12 proposals for new resolutions, and 17 
proposals for revision of ITU-T A-Series Recommen-
dations were submitted as their common proposals to 
WTSA-20 for discussion. 

The purpose of the IRM is to exchange information 
in advance to promote mutual understanding of the 
proposals, including a comparative analysis of the 
proposals made by regional organizations for resolu-
tions and recommendations of the WTSA.

From APT, Mr. Yoichi Maeda of the TTC presented 
a progress report as the chair of the APT WTSA Pre-
paratory Meeting and provided the latest information 
on the 29 focal points of the APT Co-Proposals for 
deliberation toward the unification of the draft resolu-
tions at the WTSA.

4.   Discussions toward WTSA-20

WTSA-20, the highest decision-making meeting 
for the ITU-T’s operational policies, was scheduled 
to be held in Hyderabad, India in November 2020, but 
was postponed twice due to the COVID-19 pandem-
ic. The meeting in India was finally cancelled, and the 
WTSA was held from March 1 to 9 in 2022 in Gene-
va, where the ITU headquarters are located. The 
venues were the Geneva International Conference 
Center adjacent to the ITU headquarters and the 
Montbrillant building of the ITU headquarters.

On February 28, just before WTSA-20, the Global 
Standards Symposium (GSS) was held. The theme of 
this GSS was “International standards for enabling 
digital transformation and achieving sustainable 
development goals,” and WTSA-20 attendees were 
expected to participate in the GSS.

Under the current WTSA rules, votes at the WTSA-
20 plenary session can only be taken by physical 
participants representing each country, and remote 

participants cannot participate in the vote. However, 
in consideration of the impact of the COVID-19 pan-
demic, participants were able to participate in discus-
sions at all WTSA-20 meetings in a remote online 
format and were able to participate in monitoring of 
plenary sessions.

5.   Meetings of Focus Group, Joint Coordination 
Activities, and Ad-Hoc Group

The activities of the Focus Group (FG), Joint Coor-
dination Activities (JCA), and Ad-Hoc Group (AHG) 
were reported. The results of the FG’s deliberations 
will be transferred to the relevant Study Groups 
(SGs), which will be considered as new issues han-
dled by the ITU-T. This will have an impact on the 
structure of Questions for each SG in the next study 
period and will be important to understand the trends 
of future deliberations.

(1)  FG on Quantum Information Technology for 
Networks (FG-QIT4N)

The final activity report of FG-QIT4N on quantum 
information and communication technology was pre-
sented, and the report was approved. This FG was 
established in September 2019 under the leadership 
of TSAG and worked until December 2021, produc-
ing nine outcome documents. To promote the specific 
standardization of the outcome document, FG mem-
bers proposed to plan a briefing session for each SG 
to facilitate the transition of the outcome document to 
the related SG and agreed to send a liaison document 
to all SGs to that effect.

The outcome documents will be compiled into nine 
documents, including glossary terms, use cases, the 
quantum key distribution network protocol, and net-
work technology. They will be transferred to SG13, 
SG17, SG11, and SG15, which are closely related to 
each other, for further study. This FG was managed 
by three co-chairs from Russia, the United States, and 
China.
(2)  JCA on Digital COVID-19 Certificates (JCA-

DCC)
Regarding the JCA-DCC whose establishment was 

agreed at the previous TSAG meeting, it was agreed 
to issue a liaison document to publicize the establish-
ment of the JCA, the purpose of its activities, and the 
deadline for applications to participate in the JCA of 
the end of February. The scope of the JCA is to coor-
dinate the work of standardizing digital COVID-19 
certificates among the relevant ITU-T SGs, external 
organizations, and forums; promote compatible data 
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architectures for data sharing; and promote interoper-
ability, agility, and security for all parties involved 
with users. The JCA-DCC is chaired by Mr. Heung 
Youl Youm (Korea, Chairman of SG17), and the first 
meeting will be held electronically in May 2022.
(3)  FG on Testbeds Federations for IMT-2020 and 

beyond (FG-TBFxG)
The establishment of an FG-TBFxG was reported, 

with SG11, which handles signaling protocols and 
test specifications, as its parent. This FG functions as 
a platform to harmonize testbed specifications 
between standards developing organizations/Fora, 
develops an application programming interface (API) 
along the testbed federation reference model defined 
in Recommendation ITU-T Q.4068 developed in col-
laboration with European Telecommunications Stan-
dards Institute (ETSI) Technical Committee on Core 
Network and Interoperability Testing, and defines a 
set of federated testbeds and API use cases.

6.   RG meeting

The following is a summary of the main issues dis-
cussed in the RG established at TSAG. The report of 
each RG is approved at the closing plenary of TSAG 
and reflected as part of the TSAG meeting report at 
WTSA.
(1) RG-WP

The RG-WP is a group that deals with issues related 
to SG restructuring, and was given a two-session time 
frame for deliberation. This RG reviewed all SG 
activity reports, sought endorsement of the proposed 
agenda in plenary, and compiled discussions on SG 
restructuring toward WTSA-20.

It was assumed that the SG configuration would be 
maintained at the current configuration with 11 SGs 
at the WTSA-20. Full-scale reorganization will be 
discussed in the lead-up to WTSA-24. To accelerate 
this discussion, the Correspondence Group (CG) was 
established under the RG-WP to analyze and study 
the optimal distribution of SG configuration. Mr. 
Philip Rushton (Department for Digital, Culture, 
Media & Sport, United Kingdom), Chairman of CG, 
reported the action plan of CG and agreed on the 
action plan for analysis of SG restructuring.

The action plan for the SG restructuring analysis 
was discussed during the meeting with two additional 
editing sessions. This action plan aims to thoroughly 
review the potential restructuring options of the 
ITU-T based on empirical analysis, with a view to 

approving the SG restructuring plan at WTSA-24. In 
advancing the action plan, it was agreed that the defi-
nition of the key performance indicators (KPIs)/met-
rics to be collected would be clarified, the priorities 
of the various KPIs/metrics to be collected and the 
timing of implementation of KPIs/statistics would be 
clarified, and consideration would be given to the 
funds to be considered.
(2) RG-WM

The RG-WM reviews the WTSA Resolution 1 and 
A-Series Recommendations (Resolution 32, Recom-
mendation A.1, Recommendation A.7, Recommen-
dation A.8, etc.), which stipulate various ITU-T work 
procedures and rules. There were many issues to 
discuss at this meeting, and the RG-WM was allo-
cated a three-session time frame. Regarding the pro-
posal to revise Chapter 5.3 of the JCA proposed by 
Korea in ITU-T Recommendation A.1, “Working 
Method of ITU Telecommunication Standardization 
Sector,” the necessity was not fully understood based 
on the discussions at the RG-SC, and the proposal to 
revise JCA was not agreed upon.
(3) RG-SC

The RG-SC is studying ways to strengthen cooper-
ate with other standards bodies and measures. At this 
meeting, we discussed liaison activities to strengthen 
cooperation between sectors within the ITU and other 
standardization organizations such as International 
Organization for Standardization/International Elec-
trotechnical Commission (ISO/IEC) Joint Technical 
Committee 1 and oneM2M. It was agreed in plenary 
on the revised draft recommendation of A.5 “General 
procedure for including references to other organiza-
tions’ documents in ITU-T Recommendations” as a 
WTSA-related issue after 1 drafting session, and it 
was decided to propose the revised draft recommen-
dation to WTSA-20. It was also agreed on a draft 
recommendation to revise ITU-T Recommendation 
A. 23, “Cooperation with the International Organiza-
tion for Standardization on Information Technology 
(ISO) and the International Electrotechnical Com-
mission (IEC) - Appendix II: Best Practices” and 
proposed it to WTSA-20.

7.   Schedule of future meetings

The first meeting of TSAG for the new study period 
(2022–2024) is scheduled to be held in Geneva on 
December 12–16, 2022.
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External Awards

IPSJ Outstanding Paper Award
Winners: Takashi Koide, NTT Security Japan; Daiki Chiba, NTT 
Security Japan; Mitsuaki Akiyama, NTT Social Informatics Labora-
tories; Katsunari Yoshioka, Yokohama National University; Tsutomu 
Matsumoto, Yokohama National University
Date: March 30, 2022
Organization: Information Processing Society of Japan (IPSJ)

For “Understanding the Fake Removal Information Advertisement 
Sites.”
Published as: T. Koide, D. Chiba, M. Akiyama, K. Yoshioka, and T. 
Matsumoto, “Understanding the Fake Removal Information Adver-
tisement Sites,” Journal of Information Processing, Vol. 29, pp. 
392–405, 2021. 

IEEE Senior Member
Winner: Takayuki Ogasawara, NTT Basic Research Laboratories
Date: April 30, 2022
Organization: The Institute of Electrical and Electronics Engineers 
(IEEE)

IEEE Senior Membership is an honor bestowed only to those who 
have made significant contributions to the profession.

Honorable Mention Award
Winners: Jack Jamieson, NTT Communication Science Laborato-
ries; Daniel A. Epstein, University of California Irvine; Yunan Chen, 
University of California Irvine; Naomi Yamashita, NTT Communica-

tion Science Laboratories
Date: May 5, 2022
Organization: ACM Conference on Human Factors in Computing 
Systems (CHI) 2022

For “Unpacking Intention and Behavior: Explaining Contact Trac-
ing App Adoption and Hesitancy in the United States.”
Published as: J. Jamieson, D. Epstein, Y. Chen, and N. Yamashita, 
“Unpacking Intention and Behavior: Explaining Contact Tracing 
App Adoption and Hesitancy in the United States,” Proc. of CHI 
2022, New Orleans, USA, Apr./May 2022. 

Best Paper Award
Winners: Koji Yamamoto, Kyoto University; Takayuki Nishio, 
Kyoto University; Masahiro Morikura, Kyoto University; Hirantha 
Abeysekera, NTT Access Network Service Systems Laboratories
Date: May 7, 2022
Organization: The Institute of Electronics, Information and Com-
munication Engineers (IEICE) Communications Society

For “Stochastic Geometry Analysis of Inversely Proportional Car-
rier Sense Threshold and Transmission Power for WLAN Spatial 
Reuse.”
Published as: K. Yamamoto, T. Nishio, M. Morikura, and H. Abey-
sekera, “Stochastic Geometry Analysis of Inversely Proportional 
Carrier Sense Threshold and Transmission Power for WLAN Spatial 
Reuse,” IEICE Trans. Commun., Vol. E104.B, No. 10, pp. 1345–
1353, 2021. 
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