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1.   Introduction

Optical interconnection is a technology that is more 
advantageous than data communication using elec-
tricity as the transmission capacity and transmission 
distance increase due to the characteristics of wide 
band and low loss of optical fiber. This technology 
has been used in long-distance communication net-
works since the 1980s. Due to the increase in Internet 
traffic, the application area where optical fiber can 
show its superiority has been expanded to shorter-
distance transmission, and optical interconnection is 
widely used in datacenter networks. As the number of 
devices connected to the Internet and the amount of 
traffic from devices increase, it is expected that the 
increase in traffic will continue. Therefore, research 
interests are to increase the transmission capacity 
where optical interconnections have already been 
applied and apply optical interconnection to shorter-
distance transmission, as shown in Fig. 1. Specifi-
cally, optical interconnections inside the board and 
chip are expected to become important for improving 
the throughput of electronic devices such as routers 
and servers.

For this purpose, it is important to reduce the power 
consumption and cost of optical transmitters. To 

reduce power consumption, it is important to modu-
late optical devices at high speed. To achieve this, it 
is necessary to increase the optical-confinement fac-
tor in the core region as much as possible. A large cost 
is required for assembly and testing, so cost reduction 
is necessary by integrating multiple optical devices in 
the same substrate. It is therefore important to use 
silicon (Si) photonics technology, which can be used 
to fabricate optical waveguides with low loss and 
optical circuits with high performance by using fabri-
cation technology used in Si electronic circuits. Since 
it is not possible to fabricate a laser or a highly effi-
cient optical modulator using Si, a method for inte-
grating III-V compound semiconductors, which are 
the materials for lasers and modulators, is an issue for 
large-scale integration.

In this article, we describe membrane optical devic-
es on Si substrates. Such devices are thin-film optical 
devices fabricated on low-refractive materials. We 
previously fabricated and demonstrated high-effi-
ciency lasers and modulators using indium phosphide 
(InP)-based compound semiconductors with a typical 
thickness of about 250 nm on silicon dioxide (SiO2)/
Si substrates [1–5]. High optical confinement of the 
core layer can be obtained by sandwiching a device 
between low-refractive index materials such as SiO2 
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and air. We specifically describe the optical modula-
tors in detail.

2.   Membrane optical modulators

Optical modulators can be classified into two types: 
phase modulators that mainly modulate the refractive 
index and intensity modulators that modulate the 
absorption coefficient. A phase modulator is used as 
a Mach-Zehnder (MZ) modulator in combination 
with an MZ interferometer, and by combining MZ 
modulators and modulating the phase and intensity, it 
is possible to obtain a large-capacity transmission 
exceeding 1 Tbit/s per wavelength and long-distance 
transmission. Typical materials used are lithium nio-
bate (LiNbO3), Si, and InP. Due to the increase in 
traffic, optical interconnects increase their impor-
tance in a datacenter. Thus, it is important to reduce 
the transmitter cost by reducing the device size and 
integrating many devices including lasers on the 
same chip. For this purpose, InP-based and germani-
um silicon (GeSi) intensity modulators, which are 
one order of magnitude more efficient than LiNbO3 

and Si, are considered key devices. Since intensity 
modulators use only the intensity change as a signal, 
the transmission capacity is generally smaller than 
that of MZ modulators, but their simple and compact 
configuration is important when a large number of 
transmitters are required at shorter distances. Consid-
ering their use in the 1.3-μm wavelength used in 
datacenters, there is currently a problem in the growth 
of GeSi; thus, InP compound semiconductors have 
become advantageous in addition to integrate lasers.

Figure 2(a) shows a schematic of a photonic-inte-
grated circuit using an MZ modulator consisting of a 
Si MZ interferometer and InP phase modulators, and 
membrane lasers [6]. By integrating the spot size 
converters (SSCs), it is possible to assemble a device 
with optical fiber with low-coupling loss by butt-
coupling the device to the optical fiber without using 

a lens. Figures 2(b) and (c) show the cross-sectional 
view of a membrane laser and membrane phase 
modulator. Reduction in the optical-confinement fac-
tor in the laser core layer is important to suppress 
internal loss and spatial hole-burning because the 
laser for biasing the modulator requires high output 
power and stable single-mode lasing. Therefore, the 
Si waveguide is placed under the laser core layer. 
Since the effective refractive index of the membrane-
laser structure is similar to that of the Si waveguide, 
the optical-confinement factor in the laser core layer 
can be controlled by adjusting the width of the Si 
waveguide. In a phase modulator, the Si waveguide is 
eliminated to maximize the optical-confinement fac-
tor. Therefore, the membrane optical device can 
freely design the confinement of light between the Si 
waveguide and membrane optical device.

The fabrication process is shown in Fig. 3. (a) A Si 
waveguide is fabricated using a Si on insulator (SOI) 
substrate, and after the entire waveguide is covered 
with SiO2, it is planarized using chemical mechanical 
polishing, and the multiple-quantum-well (MQW) 
layer, which is the core layer of the laser grown on the 
InP substrate, is directly bonded on the planarized 
SiO2. (b) The MQW layer is removed by selective 
etching except for the area that includes the laser core 
layer, and the InP layer is exposed. (c) An n-type 
indium gallium arsenide phosphide (InGaAsP) layer, 
which is the core layer of the phase modulator, is 
grown on the InP layer by using metal organic chem-
ical vapor deposition. (d) The laser and phase modu-
lator core regions are formed using selective etching. 
(e) Core regions are embedded with an undoped InP 
layer by using selective regrowth. (f) Selective dop-
ing is carried out to form n- and p-type doping 
regions. (g) The laser and phase modulator are sepa-
rated and a grating is formed in the top surface layer 
of the laser region. (h) Finally, an SSC and electrodes 
are formed. The advantage of this fabrication method 
involves the regrowth of compound semiconductors 

Fig. 1.   Development of optical interconnection.
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Fig. 2.   �(a) Schematic diagram of photonic integrated circuit including MZ modulator and membrane laser. (b) Cross-
sectional view of membrane laser. (c) Cross-sectional view of phase modulator.
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Fig. 3.   Fabrication procedure.
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on Si substrates. Since the total thickness of the mem-
brane optical device is about 230 nm, regrowth on the 
Si substrate becomes possible due to the resistance to 
the strain caused by the thermal-expansion coeffi-
cient difference between Si and InP. Thus, InP-based 
semiconductors with different bandgaps, such as 
laser-active layers and phase-modulator layers, can 
be fabricated on Si on a wafer scale. Since the marker 
for the stepper on the Si substrate is used for the 
alignment of the III-V core regions, the Si waveguide 
and membrane optical device can be integrated with 
the alignment accuracy of the stepper.

The characteristics of the fabricated device are 
shown in Fig. 4. The length of the laser-active region 
and phase modulator is 500 μm. Thanks to the high 
modulation efficiency of the n-InGaAsP layer, the 
length of the phase modulator is much shorter than 
the Si phase modulator, which has a length of several 
millimeters. Figure 4(a) shows the current depen-
dence of the output light intensity when the MZ opti-

cal modulator is set to the OFF state. The output light 
is received by the lensed fiber at measurement tem-
peratures of 25 and 80°C. In this experiment, reflec-
tion occurred at the end facet of the device, resulting 
in mode hopping, as shown in the figure. It is possible 
to suppress the reflection by directly connecting 
fibers, but we use lensed fiber to simplify the experi-
ment. The threshold current was about 6 mA at 25°C 
and about 8 mA at 80°C. The maximum fiber output 
power was 2 mW at 25°C and about 1 mW at 80°C. 
The fiber coupling loss was 3 dB. Figure 4(b) shows 
the oscillation spectra at 25 and 80°C with bias cur-
rents of 76.0 and 50.6 mA, respectively. Single-mode 
oscillation was obtained, and the side mode suppres-
sion ratio at 80°C was 59 dB. Figure 4(c) shows the 
dynamic characteristics of the MZ modulator when 
modulated with a 50-Gbit/s non-return-to-zero 
(NRZ) signal at operating temperatures of 25 and 
80°C. An electrical signal with a peak voltage of 2.5 
V was input into the phase modulator, and the signal 

Fig. 4.   �Characteristics of fabricated device. (a) I-L characteristics at 25 and 80°C. (b) Lasing spectra. (c), (d) Eye diagrams 
with 50-Gbit/s NRZ signals at 25 and 80°C.

−80

−70

−60

−50

−40

−30

−20

−10

1550 1555 1560 1565
0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80

(a)

(d)

LD current (mA)

25°C

80°CO
ut

pu
t p

ow
er

 (
m

W
)

O
ut

pu
t p

ow
er

 (
dB

m
)

25°C

80°C

Wavelength (nm)

(b)

25°C 80°C

5 ps/div 5 ps/div

(c)

0



Feature Articles

NTT Technical Review 32Vol. 20 No. 8 Aug. 2022

was terminated by 50 ohms. Although the extinction 
ratio was as low as 3 dB, we confirmed a clear eye-
opening at both temperatures. The extinction ratio 
can be improved by differential operation and applying 
an inverted signal to the other electrode of the phase 
modulator. The core layer of the phase modulator is 
relatively long (500 μm) for lumped electrodes, but it 
can operate on 50-Gbit/s NRZ signals thanks to the 
low capacitance of the membrane structure.

We also developed an electro-absorption modulator 
(EAM) using InP-based MQWs [7]. Since we can 
obtain large absorption change in the EAM, there is 
no need to use an interferometer such as an MZ 
modulator, which results in a very simple configura-
tion. Therefore, EAMs with a core-layer length of 
about less than 300 μm on InP substrates are inte-

grated with lasers and are widely used in datacenters. 
However, the operation speed of the EAM on InP 
substrate is limited by the capacitance, and it is neces-
sary to use the 50-ohm termination and apply the 
traveling wave-type electrode to increase the speed. 
Therefore, the EAM using a membrane structure has 
attracted attention due to its low capacitance. Since it 
is important to increase the optical-confinement fac-
tor to the core layer as well as the phase modulator, 
we fabricated a device without placing a Si wave-
guide under the EAM core layer. A nine-layer MQW 
with a photoluminescence peak of 1230 nm was used 
as the core layer. The voltage dependence of transmit-
tance at an operating wavelength of 1280 nm is 
shown in Fig. 5(a). For a device with a core-layer 
length of 200 μm, an extinction ratio of 8.5 dB can be 

Fig. 5.   �Characteristics of fabricated EAM. (a) Voltage dependence of transmittance at operating wavelength of 1280 nm. 
(b) Small signal response at bias current of 2 V. (c) Input electrical and (d) output optical eye diagrams with 
100-Gbit/s NRZ signals.
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obtained by changing the bias voltage from 0 to 3 V. 
The insertion loss of the EAM excluding the fiber 
coupling loss is estimated to be 3 dB compared with 
a Si waveguide. Figure 5(b) shows the small-signal 
response. The operating wavelength was set to 1280 
nm, and the bias voltage was set to 2 V. We did not use 
a 50-ohm termination. As shown in the figure, the 
3-dB band was 59 GHz. This clearly shows the 
advantage of a membrane photonic device.

Next, we measured the eye diagrams of the 
100-Gbit/s NRZ signal. Figures 5(c) and (d) show 
the input electrical signal and optical output signal, 
respectively. The bias voltage of the EAM was set to 
1.2 V. An electrical signal with a peak voltage of 0.12 
V from the pulse pattern generator was amplified 
with an electrical linear amplifier of 22 dB and 
applied to the EAM. The eye diagram is comparable 
to the input electrical signal, and the extinction ratio 
was 4.6 dB. Since laser integration is possible with 
the same manufacturing process as a MZ-modulator-
integrated distributed feedback laser, it is expected to 
be applied to the optical interconnection of short 
distances such as inside racks and boards.

3.   Summary

This article argued that membrane optical modula-
tors are suitable for fabricating modulators with high 
speed and low power consumption because of their 
high optical-confinement factor and low capacitance. 
An SSC is also integrated so that it can be easily con-
nected to fiber arrays. Because an SCC can be inte-
grated on the Si photonic circuit, it is also possible to 
integrate it with multiplexer/demultiplexer compo-
nents using the Si waveguide. Therefore, it is expect-
ed to be a key device for short-distance optical inter-

connections, where it is important to integrate optical 
devices at high density and maximize throughput per 
unit length.
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