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1.   Background and overview

Advanced wireless-communication systems, such 
as Wi-Fi, Long-Term Evolution (LTE), and the 5th-
generation mobile communication system (5G), 
enable a wide variety of devices to connect to a net-
work; thus, the number of connected devices and 
their traffic are exploding. The large number of con-
nected devices will be a foundation of Society 5.0 [1], 
where a huge amount of physical-space information 
is accumulated in cyberspace. Physical-space infor-
mation will be analyzed through artificial intelligence 
(AI), and the process is expected to bring new value 
to industry and society in ways not previously possi-

ble. Innovative Optical and Wireless Network 
(IOWN) [2] will accelerate the creation of big data of 
physical-space information and make them accessi-
ble from everywhere. 

The advancement of AI technologies will also 
accelerate the use of physical-space information in 
the IOWN/6G era [3]. The accuracy of vision-based 
recognition using deep learning has been improving 
yearly [4], and the autonomous operation of robots 
and vehicles have also significantly advanced [5]. By 
using advanced AI technologies, physical-space 
information is expected to provide new value for 
wireless-communication systems.

Wireless communications is also being enhanced 
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due to the demand of greater wireless link capacities, 
latencies, and reliabilities [6]. Wireless-communica-
tion systems, such as LTE, 5G, and Wi-Fi [7, 8], sup-
port a high-speed data rate and an increasing number 
of user terminals. The radio frequency of such sys-
tems is expanding to super high frequency (SHF) 
(3–30 GHz) and extremely high frequency (EHF) (30 
GHz–3 THz) bands to obtain larger capacity. Since 
the link quality in the higher radio frequency is more 
subject to microwave propagation such as object 
shielding [7], the relationship between physical-
space and wireless-communication-link information 
is becoming stronger. 

NTT Network Innovation Laboratories is studying 
the relationship between physical-space and wire-
less-communication-link information and establish-
ing the core technologies for new services in Society 
5.0. In this article, wireless-link-quality prediction 
and device-position-estimation technologies are 
introduced to show the effectiveness of using the rela-
tionship between physical-space and wireless-com-
munication-link information. 

2.   Physical-space and 
wireless-communication-link information

Figure 1 shows the relationship between physical-

space and wireless-communication-link information. 
In Society 5.0, a huge number of devices will connect 
to a network using wireless-communication links, 
and cameras/sensors will be located everywhere and 
be equipped with mobility devices. Cameras/sensors 
obtain images of the physical space, and the informa-
tion is updated via wireless or wired connections. The 
position and status information of wireless devices 
are also expected to be collected as physical-space 
information. Wireless signals will propagate through 
almost all the physical space, and the channel-state 
information of the wireless links and their link quali-
ties are the result of the propagation through the 
physical space. Therefore, there are solid relation-
ships between wireless-communication-link and 
physical-space information.

NTT Network Innovation Laboratories has focused 
on the relationship between wireless-communica-
tion-link and physical-space information and devel-
oped wireless-link-quality-prediction and device-
position-estimation technologies. Wireless-link-
quality-prediction technology uses camera images 
and provides future throughput variation by using the 
detected movement of the surrounding objects. 
Device-position-estimation technology provides 
wireless-device position by monitoring the pilot sig-
nals between the wireless device and a single base 

Fig. 1.   Image of Society 5.0 and the relationship between wireless-communication-link and physical-space information.
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station. Both technologies are based on supervised 
learning. We evaluated the performances of these 
technologies through experiments in actual outdoor 
and indoor environments, respectively.

3.   Wireless-link-quality prediction using 
camera images

Wireless-link quality is strongly affected by the 
objects blocking the line of sight between a base sta-
tion and user terminals as the radio frequency 
becomes high such as over the SHF band (> 3 GHz). 
Wireless-link-quality prediction for the millimeter 
wave (60 GHz) was proposed [9], and the authors 
used a depth camera to detect signal blocking. We 
developed prediction technologies for the SHF band 
by using high-definition (HD) cameras and con-
firmed that the long-term prediction corresponding to 
second-order future was achieved using physical-
space information [10]. It is expected that long-term 
prediction will provide a sufficient lead time to coun-
ter the negative change in link quality. Our wireless-
link-quality-prediction technology provides future 
throughput variation between a fixed base station and 
user terminal by detecting the movements of the 
objects surrounding the user terminal. We conducted 

outdoor experiments to confirm the effectiveness of 
this technology.

Figure 2 shows our developed user terminal testbed 
and the flow of wireless-link-quality prediction using 
camera images. The testbed communicates with the 
base station in the 5.6-GHz Wi-Fi channel. Cars, 
trucks, buses, and pedestrians passed through this 
site, and the testbed monitored the surrounding 
objects using two HD cameras (1920 × 1080 pixel). 
In wireless-link-quality prediction, the object-detec-
tion algorithm of M2Det [11] is used to obtain the 
bounding boxes of the moving objects from the cam-
era images. It was confirmed that better detection 
algorithms provide more accurate wireless-link-
quality prediction [10]. Object-detection algorithms 
output the bounding boxes and their classes. By using 
the bounding boxes, the throughput variation at one 
second in the future was predicted. The throughput-
variation-prediction block uses random forest regres-
sion. Throughput variation is defined as the ratio of 
the future throughput to the median of the through-
puts in the past 30 seconds. Therefore, throughput 
variation becomes 1.0 when there is no such varia-
tion. 

The measured dataset totaled 3490 seconds of  
data, containing 288 cars, 20 buses/trucks, and 36 

Fig. 2.   �The wireless-link-quality-prediction testbed in the experimental environment. The camera images are used as the 
input of the object-detection algorithms, and the throughput-variation-prediction block provides future throughput 
variation by using the detected bounding boxes and their classes.
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people-transit events. The dataset was divided into 10 
parts, and 9 were used for training to generate the 
throughput-prediction model. Wireless-link-quality 
prediction was conducted using the remaining datas-
et. The estimated and measured throughput variations 
are shown in Fig. 3. The vehicle-passing events and 
person-transit events denote the time when the vehi-
cles or persons are passing around the user terminal. 
We can see that throughput degradation was predict-
ed using camera images. Figure 4 shows the 90th 
percentile of the absolute errors of three prediction 
algorithms against the lead time. We compared the 
prediction performance of the wireless-link-quality-
prediction technology using bounding boxes, past 
throughputs, and both past throughputs and bounding 
boxes. We found that the prediction performance 
using only the bounding boxes was the best when the 
lead time was greater than 1 second. These results 
indicate that the contribution of past throughputs 
becomes negligible for long-term prediction, and 
physical-space information is valid when the lead 
time is greater than 1 second. 

4.   Device-position estimation

The relationship between wireless-communication-
link and physical-space information can be used to 
find the physical-space information using the wire-
less-communication system information. Wireless 
sensing technologies have gained much attention [12] 
for the 6G era. Although the Global Positioning Sys-
tem (GPS) is the most well-known position estima-

tion technology, it works only for outdoor environ-
ments and without tall buildings around the device. 
To obtain accurate position information in an indoor 
environment, wireless-communication systems are 
expected to play an important role [13]. We devel-
oped our device-position-estimation technology, 
which uses angle of arrival (AoA) estimation and 
deep learning using Wi-Fi feedback packets with a 
single access point [14]. 

This technology uses a monitoring terminal that 
detects the feedback signal in the Institute of Electri-
cal and Electronics Engineers (IEEE) 802.11 stan-
dards, as shown in Fig. 5. The monitoring terminal 
obtains the information of the channel state information 

Fig. 3.   Predicted and measured throughput variation for person-transit and vehicle-passing events.
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(CSI) between a base station and user terminal and 
the received signal strength indicator (RSSI) of the 
feedback signal, which corresponds to the link 
between the monitoring terminal and user terminal. 
The monitoring terminal calculates the correlation 
matrix R then outputs R as well as the signal-to-noise 
ratio (SNR) and RSSI into the position-estimation 
block. Since the elements of R contain the informa-
tion of the phase differences in the arrival waves, the 
AoA estimation uses R [15]. The position of the user 
terminal is predicted using the input from the moni-
toring terminal and a deep neural network (DNN), 
which consists of gated recurrent units and three fully 
connected layers. 

To confirm the device-position-estimation accura-
cy, we conducted indoor experiments using mobility 
robots. Figure 6 shows the developed user terminal 
and the indoor experimental environment. The user 
terminal ran in a figure eight, as shown with the black 
lines. The base station and monitoring terminal were 
at the locations shown in Fig. 6. The base station and 
user terminal use the 20-MHz channel in 5.6 GHz of 
IEEE 802.11ac. The number of transmit and receive 
antennas were 4 and 2, respectively. The CSI feed-
back signal of the user terminal was obtained every 
100 ms, and 80 samples of the feedback signals were 
used as input of the DNN-based position estimation. 
We trained the position-estimation model using a 
training dataset containing 13.9 hours of the position 
and CSI feedback signal and evaluated the position-
estimation error using a test dataset containing 1.0 
hour of the CSI feedback signals.

The cumulative distribution function (CDF) of the 
position-estimation errors are shown in Fig. 7. The 
position-estimation errors of the DNN with all the 
input features from the monitoring terminal, i.e., R, 
SNR, and RSSI; DNN with R; DNN with SNR and 
RSSI; and random forest regression with all these 
input features were compared. The DNN with all the 

features performed best and the median and 0.9 out-
age of the prediction errors were only 5.1 and 13.1 
cm, respectively. The medians of the DNN with R 
and DNN with SNR and RSSI were 8.2 and 17.1 cm, 
respectively. The R, which is a parameter for AoA 
estimation, highly contributed to the accurate posi-
tion estimation. We also found that the median esti-
mation errors of the random forest regression with all 
features was 44.9 cm, which was 8.8 times that of the 
DNN with all features. 

5.   Conclusion and future perspective

We presented wireless-link-quality-prediction and 
device-position-estimation technologies and dis-
cussed their effectiveness using a dataset measured in 
actual outdoor and indoor environments. Wireless-
link-quality prediction uses the bounding box infor-
mation detected using camera images and predicts 

Fig. 5.   �Device-position estimation using Wi-Fi CSI 
feedback.
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precise long-term throughput variation. Device-posi-
tion-estimation technology estimates the user device 
position on the basis of the correlation matrix, SNR, 
and RSSI obtained from the received Wi-Fi feedback 
packets. Both technologies are based on the relation-
ship between wireless-communication-link and 
physical-space information. We believe that this rela-
tionship is one of the keys to creating new value in 
Society 5.0 and will continue to develop the core 
technologies of link-quality prediction and position 
estimation. 
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