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1.   Introduction

High-quality speech applications using a micro-
phone placed near the speaker’s mouth (close micro-
phone) have been widely used, such as automatic 
speech recognition (ASR) using a smartphone and 
remote conferencing using a headset. For artificial 
intelligence (AI) to become a more practical assistant 
in our daily lives, it is required to handle speech in the 
same manner even when the speech is captured using 
microphones far from the speaker (distant micro-
phones). However, with distant microphones, rever-
beration reflected from the walls or ceilings, voices 
from other speakers, and background noise become 
mixed. Therefore, the quality of the captured speech 
deteriorates significantly, and the performance of 

speech applications, such as ASR, greatly degrades. 
To solve this problem, we are developing speech-
enhancement technology for extracting a high-quality 
voice of each speaker as if it were captured with a 
close microphone from sound captured with distant 
microphones. This article introduces the latest tech-
nology for multi-microphone speech enhancement 
that uses multiple microphones for achieving higher 
quality processing than with a single microphone.

   
2.   Challenges for achieving 

close-microphone quality

To extract a speech with close-microphone quality 
from sound captured using distant microphones, it is 
necessary to achieve three types of processing:  
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dereverberation, source separation, and denoising. 
Dereverberation transforms a blurry speech with a 
distant impression into a clear speech with the 
impression of being right next to the microphone. 
When multiple speakers’ voices and background 
noise are mixed, they are separated into individual 
sounds by source separation and denoising. This 
makes it possible to extract each speaker’s voice with 
close-microphone quality.

Conventional multi-microphone speech-enhance-
ment methods achieve dereverberation, source sepa-
ration, and denoising by estimating the generation 
processes of captured sound, in which sounds propa-
gate from the sources to the microphones and mix, 
then applying the inverse of the estimated processes 
to the captured sound (Fig. 1(a)). Specifically, the 
processes of reverberation reflecting from walls or 
ceilings and reaching the microphones, multiple 
sounds coming from different directions and mixing, 
and noise coming from all directions and mixing are 
estimated, then their inversions are applied.

For example, WPE (weighted prediction error) [1] 
developed by NTT is the world’s first dereverberation 
method. It can achieve almost perfect dereverberation 
by estimating the reverberation process of the cap-
tured sound without any prior knowledge on what 
environments in which the sound was captured (i.e., 
by blind processing), provided the captured sound 

does not contain noise. Independent component 
analysis [2, 3], which has been actively studied 
worldwide by researchers, including NTT, can 
achieve precise source separation by blind process-
ing, provided the captured sound does not contain 
reverberation.

However, these conventional multi-microphone 
speech-enhancement methods cannot be used to 
solve the three problems (reverberation, multiple 
sound sources, and noise) at the same time in an over-
all optimal form. It is impossible to simultaneously 
estimate all generation processes from the captured 
sound, which is a mixture of noise, reverberation, and 
multiple sounds, and execute the inversion of the 
entire process. Therefore, we have to apply each pro-
cess in turn. For example, dereverberation is executed 
first assuming that noise is absent, so precise derever-
beration is impossible. We then apply sound-source 
separation and denoising, assuming that reverbera-
tion is wholly suppressed; thus, the best performance 
cannot be achieved. It is therefore impossible to 
achieve overall optimal speech enhancement when 
combining these conventional methods.

The sound captured using distant microphones 
almost always contains reverberation, multiple sound 
sources, and noise. For this reason, it has been con-
sidered critical to optimally apply the three types of 
processing, dereverberation, source separation, and 

Fig. 1.   Conventional and unified model-based methods for multi-microphone speech enhancement.
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denoising, in an overall optimal form.

3.   Unified model for dereverberation, source 
separation, and denoising

In response to this, we devised a unified model that 
can solve the three problems in an overall optimal 
form [4, 5]. The unified model first mathematically 
models the general properties that close-microphone 
quality speech and noise must satisfy. It can then 
enable overall optimum processing by optimizing 
each type of processing on the basis of the unified 
criterion that the sound obtained from combining the 
three types of processing best satisfies the close-
microphone property (Fig. 1(b)). For example, we 
can significantly improve ASR using distant micro-
phones with the unified model (Figs. 2(a)–(c)).

Figure 3 shows a spectrogram of two speech sig-
nals and noise captured using a close microphone and 
the mixture of them captured using a distant micro-
phone. The speech signals captured using the close 
microphone are sparse signals in which the sound 
concentrates in separate local areas, and are non-sta-
tionary signals that change with time. In contrast, 
noise is a dense and stationary signal in which the 
sound spreads over a wider area and does not change 

much with time. However, the mixture captured using 
a distant microphone has different characteristics. It 
is denser than the speech signals with close-micro-
phone quality and more non-stationary than noise 
with close-microphone quality.

The unified model uses the differences in these 
sound characteristics. It controls dereverberation, 
source separation, and denoising so that the sound 
resulting from their application best satisfies the char-
acteristics of speech and noise with close-microphone 
quality. For example, in dereverberation, we estimate 
the reverberation-generation process and apply its 
inversion so that the sound obtained in combination 
with source separation and denoising best satisfies 
the close-microphone quality. Similarly, we optimize 
source separation and denoising by estimating the 
sound-generation process and applying its inversion 
to best satisfy the close-microphone quality when 
combined with dereverberation. With the aim of 
achieving close-microphone quality, it has become 
possible to execute overall optimum processing when 
combining all types of processing.

We have also developed computationally efficient 
algorithms for unified model-based multiple micro-
phone speech enhancement [6, 7]. For example, the 
processing using the unified model illustrated in  

Fig. 2.   Improvement in ASR performance using multi-microphone speech enhancement.
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Fig. 2 (executing overall optimization of dereverbera-
tion, source separation, and denoising using eight 
microphones) can now be completed in real time 
using a Linux computer. When we limit the problem 
to extracting a speaker’s voice by blind processing 
from background noise and little reverberation, we 
can reduce the computational cost to the extent that 
real-time processing is possible even with an embed-
ded device.

4.   Switch mechanism enabling accurate 
estimation with a smaller number 

of microphones

A switch mechanism is an applied technology 
using the unified model and enables highly accurate 
estimation even with a relatively small number of 
microphones [8, 9]. With conventional multi-micro-
phone speech-enhancement methods, it is necessary 
to use a sufficiently large number of microphones for 
precise processing compared with the number of 
sound sources included in the captured sound. This 
hinders the application of multi-microphone speech 
enhancement to real-life problems. To solve this 
problem, we introduce a switch mechanism that can 

improve estimation accuracy with a small number of 
microphones.

The idea of this switch mechanism is summarized 
as follows. Even when the captured sound contains 
many sound sources, the number of sources appear-
ing simultaneously can be smaller when counting 
them within each short time interval. Let us explain 
this using Fig. 4. The horizontal axis is time, and a 
horizontal bar in each color represents when each of 
the three speakers speaks. When we divide the hori-
zontal axis into short intervals a, b, and c, as shown in 
the figure, only two speakers are speaking in each 
time interval even though there are three speakers in 
total. With this interval division, we can improve 
multi-microphone speech enhancement by applying 
it separately to each short interval with the decreased 
number of speakers. We call this a switching mecha-
nism because we switch speech enhancement for 
each short interval.

When combined with the unified model, the switch 
mechanism can perform best. We can use the unified 
model to optimize the interval-wise application of 
speech enhancement and the switch mechanism’s 
time interval division. This unified model-based 
speech enhancement can optimize the all processing 

Fig. 3.   Spectrograms of sounds captured using close and distant microphones.
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types (dereverberation, source separation, and 
denoising) with the switch mechanism so that the 
enhanced speech best satisfies the close-microphone 
quality.

5.   Unified model as a versatile technique of 
audio-signal processing

As described above, our unified model provides 
theoretically and practically excellent guidelines for 
integrating the three processing types in speech 
enhancement that we have conventionally combined 
in more heuristic ways. The unified model can pro-
vide a mechanism to achieve overall optimization 
even when combining more complicated processing 
approaches such as the switch mechanism. We can 
use the unified model as a versatile technique provid-
ing a basis for future audio-signal processing-tech-
nology development.

6.   Future direction: optimal integration with 
deep learning

Deep learning is another fundamental approach to 
speech enhancement, and its integration with multi-
microphone speech-enhancement methods is vital for 
the future development. While deep learning can 
conduct processing that is difficult with multi-micro-
phone speech enhancement, such as voice character-
istics-based selective listening using SpeakerBeam, a 
deep learning-based approach for computational 
selective hearing based on the characteristics of the 
target speaker’s voice [10], it also has severe limita-
tions. For example, with deep learning-based speech 
enhancement, improvement in ASR performance is 
minimal, and sound quality largely degrades due to 
reverberation. Therefore, both deep learning and 
multi-microphone speech-enhancement methods 
complement each other, thus are indispensable. For 

example, even when the ASR performance or quality 
of enhanced speech does not much improve solely by 
deep learning-based speech enhancement, they can 
be improved when combined with the multi-micro-
phone speech enhancement. Figure 2(d) shows that 
the combined approach further improves ASR perfor-
mance compared with solely using the unified model-
based multi-microphone speech enhancement. 
Speech enhancement will have much higher func-
tionality and quality through developing an optimal 
integration method for both deep learning and multi-
microphone speech enhancement.
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