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1.   Introduction: challenges toward 
multi-Tbit/s/ch optical communications

Communications traffic has been rapidly increasing 
due to the spread of broadband applications. In addi-
tion, the COVID-19 pandemic has dramatically 
changed our lifestyles, and various activities and ser-
vices have migrated to remote and virtual platforms. 
These changes are further accelerating the growth of 
communications traffic. Communications networks 
must continue to increase their capacity to cope with 
such rapid growth in traffic. Optical core networks 
require huge-capacity and long-haul transmission 
systems to accommodate client data and link metro-
politan areas as the backbone of the communications 
infrastructure. Digital coherent technology, which 
combines coherent detection and digital signal pro-
cessing, was introduced into optical core networks in 
the 2010s. Thus far, 100-Gbit/s/ch systems based on 
32-GBaud polarization-division-multiplexed (PDM) 
quadrature phase shift keying (QPSK) and 400-Gbit/s/

ch systems consisting of 64-GBaud PDM 16-ary 
quadrature amplitude modulation (16QAM) have 
been deployed [1, 2]. 

To sustain ever-increasing traffic, the transmission 
capacity per channel (per wavelength) is expected to 
exceed 1 Tbit/s in the near future and reach multi-
Tbit/s in the 2030s. Channel capacity is defined as the 
product of the symbol rate and modulation order, so 
it can be improved by increasing the symbol rate and/
or modulation order, as illustrated in Fig. 1. Increas-
ing the symbol rate while maintaining a low modula-
tion order is advantageous for constructing long-haul 
transmission systems because higher-order modula-
tion faces optical signal-to-noise-ratio limitation due 
to amplified spontaneous emission noise and fiber-
nonlinearity in the optical links, shortening transmis-
sion distance. Therefore, a symbol rate of over 200 
GBaud is necessary to construct future multi-Tbit/s/
ch long-haul optical transmission systems. This 
means that each building block in an optical trans-
ceiver is required to have an analog bandwidth of at 
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least 100 GHz, which is a Nyquist frequency of 200 
GBaud. One of the most significant challenges in 
constructing multi-Tbit/s/ch systems is implementing 
extreme-broadband digital-to-analog converters 
(DACs) and analog-to-digital converters (ADCs) in 
the optical transceiver. To address this challenge, we 
previously proposed and intensively investigated 
bandwidth doubler technology [3, 4] based on analog 
multiplexer (AMUX) and analog de-multiplexer 
(ADEMUX) integrated circuits (ICs) that can double 
the bandwidth of DACs and ADCs, respectively, as 
illustrated in Fig. 2. 

This article reviews our latest extreme-broadband 
analog ICs, e.g., 110-GHz-bandwidth AMUX/ADE-
MUX ICs [5, 6] and 200-GHz-bandwidth amplifier, 
mixer, and combiner ICs [7–10], based on our in-
house 250-nm indium phosphide (InP) heterojunc-
tion bipolar transistor (HBT) technology [11] that 
enable further bandwidth extension.

2.   110-GHz-bandwidth AMUX and 
ADEMUX ICs

We designed and fabricated AMUX and ADEMUX 
ICs using our in-house 250-nm InP HBT technology 
[11]. Figures 3(a) and (b) show a scanning electron 
microscopy (SEM) image and cross-section of our 
InP HBT. The HBT layer structure was grown on a 
3-in InP substrate and consists of a degenerately doped 
indium gallium arsenide (InGaAs) emitter contact, 
20-nm-thick InP emitter, 25-nm-thick compositionally 

graded InGaAs base, 100-nm-thick InGaAs/indium 
aluminum gallium arsenide (InAlGaAs)/InP  
collector, and InGaAs/InP subcollector. The HBTs 
have a peak cutoff frequency (fT) and maximum  
oscillation frequency (fmax) of 460 and 480 GHz, 
respectively, as shown in Fig. 3(c). They also exhibit 
a common-emitter breakdown voltage (BVCEO)  
of 3.5 V. Thus, the InP HBTs have both high-speed 
and high breakdown voltage characteristics and suitable 
for implementing broadband and high output power 
circuits.

The 2:1 AMUX IC is composed of two input linear 
buffers, a clock limiting buffer, AMUX core based on 
Gilbert-cell selector circuitry, and output linear buf-
fer, as shown in Fig. 4(a). The detailed transistor-
level structures are described in a previous study [5]. 
All the building blocks in the AMUX IC have fully 
differential configurations. Figure 4(b) shows a 
microphotograph of the 2:1 AMUX IC. The chip is  
2 mm2 and contains 210 HBTs and consumes a total 
power of 0.90 W with a single power-supply voltage 
of –4.5 V. Figure 4(c) shows the measured and simu-
lated S-parameters for the analog signal path in 
through mode. The measured 3-dB bandwidth was 
over 110 GHz and agreed well with the simulation. 
These results indicate that this AMUX IC enables us 
to generate 200-GBaud-class baseband signals.

A block diagram of the 1:2 ADEMUX IC is shown 
in Fig. 5(a). This IC consists of input linear buffers, 
clock limiting buffers, an ADEMUX core based on 
two parallel track-and-hold (T/H) circuits, and output 

Fig. 1.   Channel capacity: symbol rate versus modulation order.
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Fig. 2.   Our bandwidth doubler technology using 2:1 AMUX and 1:2 ADEMUX.
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linear buffers. The T/H circuit in the ADEMUX core 
is composed of switched emitter followers and hold 
capacitors [6]. The other blocks have similar topolo-
gies with the blocks used in the AMUX IC. Figure 5(b) 
is a microphotograph of the 1:2 ADEMUX IC. The 
chip size is also 2 mm2 and has 320 integrated HBTs. 
The ADEMUX IC dissipates a power consumption of 
1.14 W with a –4.5-V power supply. The measured 
and simulated S-parameters for the analog signal path 
in track mode are shown in Fig. 5(c). The measured 
3-dB bandwidth was 110 GHz and agreed with the 
simulations, as expected. These results also indicate 
that this ADEMUX IC can be used to receive 
200-GBaud-class baseband signals.

We have already succeeded in demonstrating vari-
ous record ultrahigh-speed optical transmission 
experiments using an AMUX-integrated optical 
transmitter front-end module [5], such as a 
200-GBaud-class optical modulation [12] and 
beyond-1-Tbit/s/ch over-1000-km long-haul optical 

transmissions [13]. Thus, the AMUX and ADEMUX 
ICs can be key enablers for next generation 
200-GBaud-class long-haul optical transmission sys-
tems.

3.   200-GHz-bandwidth amplifier, mixer, and 
combiner ICs

Toward future multi-Tbit/s/ch systems with a sym-
bol rate of over 200 GBaud, we proposed and inves-
tigated bandwidth-extension techniques [7–10], as 
illustrated in the conceptual block diagrams (Fig. 6). 
On the transmitter side, the signal bandwidth can be 
doubled using a mixer, amplifier, and combiner. On 
the receiver side, however, the signal bandwidth can 
also be doubled using an amplifier (splitter) and 
mixer. We have designed and fabricated amplifier, 
mixer, and combiner IC prototypes that have a band-
width of 200 GHz, which is twice that of the AMUX 
and ADEMUX ICs described in the previous section, 

Fig. 4.   2:1 AMUX IC: (a) block diagram, (b) chip photograph, and (c) S-parameters.
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using the same InP HBT.
Figure 7(a) shows a schematic of the amplifier IC. 

We applied a distributed circuit topology to the 
amplifier to achieve a broad gain profile and imped-
ance matching. The distributed amplifier consists of 
six unit gain cells, coplanar waveguide (CPW) trans-
mission lines, and termination resistors. Multi-peak-
ing techniques were proposed to make broad-peaking 
characteristics to compensate for loss derived from 
the packaging and subsequent components [7, 8]. A 
microphotograph of the fabricated amplifier IC is 
shown in Fig. 7(b). The IC is 0.95 × 0.87 mm and 
consumes 0.54 W of power with –4.5-V supply volt-
age. Figure 7(c) shows the measured S-parameters. 
The direct current (DC) gain and 3-dB bandwidth 
were 7.5 dB and 208 GHz, respectively.

Figure 8(a) is a schematic of the mixer IC. The 
mixer is based on a distributed topology and com-
posed of six unit cells, each of which is a single-bal-
anced mixer circuitry [9]. One of the differential 

outputs is terminated inside this prototype for testing. 
Figure 8(b) shows a microphotograph of the fabri-
cated mixer IC. The chip size is approximately  
0.8 mm2. The power consumption is 0.13 W with a 
supply voltage of –3.8 V. The measured conversion 
gain (CG) and S-parameters are shown in Fig. 8(c). 
The clock signal was set to 97.2 GHz for CG mea-
surement. The CG is –3 dB in low frequency range. 
The output covers the frequency range from DC to 
approximately 200 GHz. This mixer has the broadest 
bandwidth of any previously reported mixers.

A schematic of the combiner IC is illustrated in  
Fig. 9(a). It consists of two parallel distributed ampli-
fiers and a subsequent distributed resistive combiner 
[10]. This architecture helps in achieving both broad-
band characteristics and good isolation between two 
input ports. Figure 9(b) shows a microphotograph of 
the combiner IC, which is 0.8 mm2. The power dis-
sipation is 1.1 W from a supply of –4.5 V. The mea-
sured S-parameters are shown in Fig. 9(c). The  
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measured 3-dB bandwidth is over 220 GHz, which is 
the broadest reported to date.

We have succeeded in fabricating extreme-broad-
band amplifier, mixer, and combiner ICs that have a 
bandwidth of 200 GHz. They enable us to handle 
400-GBaud-class signals. Thus, these extreme-
broadband ICs could be key to future multi-Tbit/s/ch 
systems.

4.   Summary

We reviewed our latest extreme-broadband analog 
ICs that can break through the bandwidth bottlenecks 
in transceivers toward multi-Tbit/s/ch optical com-
munications. We will accelerate investigations for the 
practical application of these analog ICs and pursue 
further extreme performance to ensure sustainable 
progress of communications technologies.
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