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1.   Introduction

The space radio access network (Space RAN) is 
regarded as a communication infrastructure for the 
5th-generation mobile communication system (5G) 
Evolution and 6G, and aims to achieve extreme cov-
erage extension*1 to all locations, including the sky, 
sea, and space, which have not been sufficiently cov-
ered by conventional mobile communication net-
works, using non-terrestrial networks (NTNs)*2 
based on geostationary (GEO) satellites, low Earth 
orbit (LEO) satellites, and high-altitude platform sta-
tions (HAPSs)*3 [1]. 

For early implementation of extreme coverage 
extension, we are focusing on low-latency communi-
cation services using HAPSs [2]. HAPSs make it easy 
to extend communication-service coverage to a wider 
area; thus, making it possible to provide highly reli-
able communication in times of disaster, high-capac-
ity communication for ships and aircraft, and com-
munication services for distant islands and remote 
areas. Mobile carriers can improve the overall cost-
effectiveness and energy efficiency of their mobile 
networks by combining HAPSs with an increase in 
the number of their terrestrial base stations to extend 
their service coverage.

This article describes the efforts toward the practi-

cal application of HAPSs in the Space RAN. Specifi-
cally, we present use cases and technical issues of 
wireless system technology with HAPSs and propose 
a three-dimensional (3D)-cell control technology for 
frequency sharing between a HAPS and terrestrial 
networks (TNs).

2.   HAPS use cases and network configuration/
control technologies

NTT DOCOMO is researching and developing 
communication methods and network architectures 
that can flexibly link 5G networks and other TNs with 
stratospheric HAPS networks [3]. In addition to pro-
viding flexible support for a wide range of future use 
cases as envisioned in 5G Evolution and 6G, this proj-
ect is conducting studies aimed at the implementation 
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*1 Extreme coverage extension: To extend the area where base sta-
tions can communicate with mobile station terminals to all loca-
tions, including the sky, sea, and space, not covered by the cur-
rent mobile communication system.

*2 NTN: Any network in which the communication area is not lim-
ited to the ground but extended to other locations such as the air, 
sea, and space through the use of non-terrestrial equipment such 
as satellites and HAPSs.

*3 HAPS: An airborne platform that is designed to operate in the 
stratosphere on board a vehicle such as a solar-powered aircraft 
or airship.
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of communication systems that use HAPSs in terms 
of development and operation costs.

2.1   HAPS use cases
As shown in Fig. 1, for the 5G Evolution and 6G 

era, it is expected that various use cases will involve 
using HAPSs to relay radio waves or emit radio 
waves as a base station. These use cases include fixed 
systems that provide services for backhaul*4 applica-
tions and mobile systems that provide services to 
terminals either directly or via repeaters and relays. 
There is a need for flexible communication methods 
and systems that can support all use cases of fixed and 
mobile systems.

It is also necessary to flexibly control lines so that 
they can be adapted from normal business applica-
tions to public safety applications in the event of a 
disaster. Current disaster countermeasures are geared 
toward providing basic communication services such 
as voice calls and short message services, but it may 
also be necessary to consider use cases that require 
faster communication speeds, such as remote control 
of equipment at disaster sites, video transmission, 
and communication via drones. For disaster counter-
measures, it will also be necessary to study network 
configurations and control technologies that assume 
the ability of a system to operate even if certain 

devices become unavailable.

2.2    Cooperative network configuration and con-
trol technology for HAPSs and TNs

2.2.1   Classification of HAPS-mounted stations
Regarding the network configuration and control 

technology used when implementing backhauls to 5G 
base stations via HAPSs, we are focusing on the cat-
egorization of HAPS-mounted stations. They can be 
roughly divided into two types: (1) relay stations, 
which receive signals from ground stations and relay 
them back to other ground stations after executing 
necessary processes such as frequency conversion, 
and (2) base stations, which are made by installing 
5G network base-station equipment (or at least part of 
it) in a HAPS [4]. The relay type is effective when the 
number of onboard devices is relatively small and the 
size, weight, and power consumption of the HAPS-
mounted station are strictly limited. The base-station 
type is formed by equipping a HAPS with an antenna 
device, together with many base-station functions. 
The more of these functions it includes, the greater 
the amount of control that can be executed within the 

Fig. 1.   Various use cases expected for HAPS.
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*4 Backhaul: In a mobile communication network, a backhaul is a 
fixed line that supports high-speed, high-capacity transmission of 
information between a large number of wireless base stations and 
the core network.
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HAPS, making it possible to reduce the amount of 
feeder-link information. However, installing more 
functions results in a station that is larger, heavier, 
and consumes more power. 

Implementing more base-station functions on the 
ground-network side has the advantages of lower 
development costs and ease of operation, but imple-
menting these functions on the HAPS results in 
greater resilience to natural disasters. In terms of 
performance, a HAPS-mounted station should at 
least implement certain functions, such as beam con-
trol, when using millimeter waves. It is also necessary 
to comprehensively study a wide range of require-
ments to be considered when incorporating HAPS 
systems into a 5G network. These include the size, 
weight, and power consumption of HAPS-equipped 
stations, their development and operation costs, the 
ability of these HAPS platforms to be shared by back-
haul use and direct-to-device communication sys-
tems, and their ability to cooperate with GEO/LEO 
satellites.

2.2.2    Examples of network configuration in con-
junction with the 5G network

An example of a HAPS base station in a network 
configuration linked to the 5G network is shown in 
Fig. 2. The distributed unit (DU) and radio unit (RU) 

of the 5G base station are mounted on the HAPS in 
accordance with Open RAN (O-RAN) ALLIANCE 
specifications [5]. In this configuration, availability is 
ensured by installing a centralized unit (CU) at a 
disaster-resistant point on the ground. Information 
received by the HAPS from the CU in the feeder link 
is transmitted via 5G radio to a small terrestrial base-
station device (relay station) in the service link, 
enabling the use of portable 5G base stations without 
having to use a wired backhaul. In this configuration, 
it is also possible to provide direct communication 
from the HAPS to 5G terminals without the need for 
intervening relay stations. As a further extension, site 
diversity*5 can be implemented using multiple CUs 
on the ground side to reduce the impact of bad weath-
er and natural disasters, and mobility support*6 can be 
implemented by switching the communication target 
to a different HAPS when the terminal moves from 
one communication area to another.

Another promising configuration using a relay-type 

Fig. 2.   Example of cooperative configuration when HAPS is used for backhaul.
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*5 Site diversity: A technique for improving communication quality 
by switching between multiple ground stations when radio waves 
are highly attenuated due to rain or obstacles.

*6 Mobility support: Technology that allows communication to con-
tinue when a terminal moves across a communication area by 
switching it to a different base station before communication is 
interrupted.
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configuration where a 5G radio repeater is installed in 
a HAPS is shown in Fig. 3. In this configuration, the 
TN is used from the core network to the fronthaul*7, 
and the HAPS terrestrial system equipped with the 
RU function bundles and communicates signals for 
multiple beams. A broadband frequency, such as the 
Q-band, is used in the feeder link*8, and the HAPS 
relay system executes frequency conversion and 
power control. The HAPS can then establish service-
link*9 communications using multiple beams at the 
same time. As the service link, certain frequency 
bands below 2.7 GHz already identified for Interna-
tional Mobile Telecommunications (IMT) should be 
used according to the specifications approved at the 
World Radiocommunication Conference 2019 
(WRC-19) [6] and the agenda item for WRC-23 [7].

In addition to the configurations shown in Figs. 2 
and 3, we consider other promising configurations in 
which a HAPS is used to carry a standalone*10 5G 
base station. For each configuration, it is necessary to 
conduct a comprehensive study that takes into 
account various attributes such as mobility support, 
site diversity technology, frequency-sharing technol-
ogy*11, and HAPS installation requirements such as 
links with GEO/LEO satellites, the equipment 
weight, and power consumption.

3.   3D-cell control technology for frequency 
sharing between a HAPS and TNs

For mobile applications in which general user 
equipment (UE) communicates directly with HAPS 
base stations, the use of frequency bands below 2.7 
GHz specified for IMT is being discussed as Interna-

tional Telecommunication Union (ITU) agenda item 
1.4 at WRC-23 [8]. By sharing the same frequency 
between a HAPS and a TN, sets of UEs connected to 
the terrestrial IMT network can directly connect to 
the HAPS and conserve frequency resources. In this 
section, we present our proposed 3D-cell control 
technology that avoids interference between a HAPS 
and TNs. We also present a HAPS-performance 
evaluation in the 2-GHz band using the 6G system-
level simulator developed as a stepping stone for 
actualizing HAPS technology.

3.1    Evaluation of interference avoidance in the 
2-GHz band using 3D-cell control technology

3.1.1   3D-cell control technology
Our 3D-cell control technology suppresses the 

intersystem interference between a HAPS and TNs. 
As shown in Fig. 4, the HAPS suppresses the inter-
system interference and achieves load balancing by 

Fig. 3.   Example of cooperative configuration when HAPS is used for direct access.
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*7 Fronthaul: The line between the baseband processing unit of the 
base station and the wireless device, such as optical fiber.

*8 Feeder link: A communication path between a satellite or HAPS 
and a terrestrial base station (gateway) in an NTN communica-
tion system.

*9 Service link: A communication path between a satellite or HAPS 
and a terminal in an NTN communication system.

*10 Standalone: A deployment scenario using only New Radio (NR), 
in contrast with non-standalone operation which uses Long Term 
Evolution (LTE)-NR Dual Connectivity to coordinate existing 
LTE/LTE-Advanced and NR.

*11 Frequency-sharing technology: Technology that makes it possible 
to share frequencies by suppressing the interference effects that 
occur when two systems use the same frequency at the same lo-
cation. In this article, we are mostly concerned with frequency 
sharing between HAPS systems and terrestrial mobile communi-
cation systems.
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not directing the beam to the distance threshold X 
[km] around the terrestrial next-generation NodeB 
(gNB) (hereafter, X denotes gNB connection thresh-
old).
3.1.2   Simulation conditions

We assumed a scenario in which the HAPS service 
link and terrestrial gNB link share the 2-GHz band, as 
shown in Fig. 5. The HAPS simulator was used to 
evaluate the interference avoidance of the 3D-cell 
control technology. Table 1 lists the system-related 
parameters and Table 2 lists the simulation parame-

ters for each device. The layout of each device is 
shown in Fig. 5. As an initial evaluation, two Earth 
stations, two HAPSs, 500 UEs, and two terrestrial 
gNBs were placed in an area of approximately 60 × 
114 km that includes Tokyo, Japan. The two terres-
trial gNBs were placed near Tokyo, and UEs were 
randomly placed at a ratio based on population distri-
bution. 
3.1.3   Simulation results

The values of the cumulative distribution function 
(CDF) at 5, 50, and 95% for the throughput for all 

Fig. 4.   Handover and 3D-cell control technology.
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Fig. 5.   HAPS simulator.
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Table 1.   System-related parameters.

Parameter Feeder link Service link gNB link

Frequency 38 GHz 2 GHz

Bandwidth 500 MHz 20 MHz

Atmospheric
absorption loss 1 dB

Path-loss 
model Free space path loss

UMa path-loss model (TR 38.901 [9])
*Randomly applied at a ratio of

NLOS:LOS = 9:1

Max. rank

LOS: line of sight
NLOS: non LOS
UMa: urban macrocell

2
*Circular polarization is assumed. 8

Table 2.   Parameters for each device.

Device Parameter Value

UE

Quantity 500

Peak gain Tx: -3 dBi, Rx: 0 dBi

Gain pattern Omnidirectional

Noise figure 3 dB

Tx power to HAPS Always 23 dBm

Tx power to gNB Max. value = 22 dBm
*Accordance with distance to gNB [10]

HAPS

Quantity 2

Altitude 20 km

Peak gain Service link: 24 dBi
Feeder link: 30 dBi

Antenna configuration
Parabolic dish

Half-power angle of service link = 7.7°
Half-power angle of feeder link = 2.5°

Gain pattern Bessel function pattern (TR 38.811 [11])

Noise figure 3 dB

Max. number of beams 50 or 500

Tx power Service link: 43 dBm/HAPS
Feeder link: 34 dBm/HAPS

gNB

Quantity 2

Peak gain 17 dBi

Antenna configuration Sector antenna

Gain pattern Compliant with ITU-R M.2101 [12]

Down tilt 15°

Antenna height 25 m

Tx power 43 dBm/sector

Noise figure 3 dB

Earth
station

Quantity 2

Position Directly under HAPS

Tx power 34 dBm

Peak gain 50 dBi

Gain pattern

ITU-R: ITU Radiocommunication Sector
Rx: receiver
Tx: transmitter

Bessel function pattern (TR 38.811 [11])
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UEs when X was changed are listed in Table 3. We 
confirmed that load balancing worked as X increased 
and the average throughput for all UEs improved in 
the downlink. If X increases to 9 km, the number of 
UEs with low received power of the desired wave 
increases, and the throughput deteriorates because 
even UEs at a point far from the terrestrial gNB are 
connected to it. When comparing the maximum num-
ber of HAPS beams, the throughput for all UEs was 
higher when the number of beams was 500 than when 
it was 50. This is because each HAPS-connected UE 
can select the optimal HAPS beam that yields the 
maximum gain.

The values of CDF at 5, 50, and 95% in the interfer-
ence-to-noise ratio (I/N) of gNB-connected UEs 
when X was changed are listed in Table 4. The I/N 
decreased as X increased, so the interference avoid-
ance effects could be confirmed. When comparing 
the maximum number of HAPS beams, the I/N in the 
downlink was higher when the number of beams was 
50 than when it was 500. This is because the smaller 
the number of beams, the larger the transmission 
power per beam of a HAPS.

The same evaluation was conducted on the uplink, 
and load balancing and interference avoidance effects 
were confirmed as on the downlink. It is necessary to 

select an appropriate X considering that the coverage 
area of a HAPS decreases with the increase in X.

4.   Conclusion

As part of our efforts to make HAPSs practical in 
the Space RAN, we presented use cases and technical 
issues with wireless system technology with HAPSs 
and proposed a 3D-cell control technology for fre-
quency sharing between a HAPS and TNs.

NTT DOCOMO will continue developing NTN 
technology aimed at achieving extreme coverage 
extension and technology for HAPS networks and 
promoting demonstration experiments and standard-
ization activities. 

Part of this research and development was carried 
out by the Ministry of Internal Affairs and Communi-
cations (Research and Development for Expansion of 
Radio Resources; JPJ000254).
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