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1.   Introduction

To cope with the rapid increase in communication 
traffic, it is necessary to increase the transmission 
capacity per optical fiber while reducing the cost per 
bit of optical transmission systems. Innovative tech-
nologies, such as wavelength-division multiplexing 
(WDM) transmission with optical amplifiers and 
digital coherent technology with digital signal pro-
cessing (DSP) [1], have continuously been expanding 
the system capacities for optical transmission. DSP 
application-specific integrated circuits (ASICs) for 
digital coherent technology support multi-rate and 
multi-modulation formats to meet the demand for 
multiple applications: long-haul, metro, and short-
reach (particularly datacenter interconnects) net-
works. For example, a DSP-ASIC can execute ~32-
GBaud polarization-division multiplexed (PDM) 
quadrature amplitude modulation (QAM) formats 
with modulation orders from 4 to 16 for from 100 to 
200 Gbit/s/carrier [2]. Up to 600-Gbit/s/carrier with 
64QAM transmission experiments have also been 

reported with a real-time transponder including a 
64-GBaud-class DSP-ASIC [3]. NTT has recently 
developed a cutting-edge DSP and an optical device 
supporting 1.2 Tbit/s/carrier with 140-GBuad-class 
coded 64QAM for digital coherent systems [4].

To further increase system capacity, expanding the 
WDM bandwidth is effective along with high spectral 
efficiency (SE) signals with digital coherent technol-
ogy using high-order QAM formats. A transmission 
of 102.3-Tbit/s with PDM-64QAM signals has been 
demonstrated under the 11.2-THz dual-band (C and L 
bands) WDM condition with an SE of 9.1 bit/s/Hz 
[5]. NTT has also successfully demonstrated the first 
ever greater than 150-Tbit/s transmission with 
272-channel PDM-128QAM signals under the 13.6-
THz triple-band (S, C, and L bands) WDM condition 
with an SE of 11.05 bit/s/Hz [6]. Both experiments 
were conducted using the offline evaluation tech-
nique in which DSP is carried out on workstations for 
transmitted and captured received signals. The offline 
evaluation enables detailed signal analysis of DSP 
methods toward ASIC implementation.
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In this article, we present real-time triple-band 
transmission with a WDM bandwidth of 16.95 THz 
using DSP-ASIC-integrated optical transponders. We 
transmitted total capacities of 102.7 and 112.8 Tbit/s 
using 226-channel WDM signals with 400-Gbit/s 
PDM-16QAM and 500-Gbit/s PDM-32QAM [7]. As 
can be seen in Fig. 1, we achieved, for the first time, 
over 100-Tbit/s capacity in real-time transmission 
experiments.

2.   Experimental setup for ultra-wideband WDM 
transmission using DSP-ASIC-integrated  

optical transponders

Figure 2 shows the setup for triple-band WDM 
transmission experiments with real-time optical tran-
sponders. We used three real-time optical transpon-
ders having DSP-ASICs based on 16-nm comple-
mentary metal oxide semiconductor (CMOS) tech-
nology [3, 8]. The transponders were also imple-
mented driver (DRV) amplifiers, a lithium niobate 
in-phase and quadrature modulator (LN-IQM), and a 
high-bandwidth intradyne coherent receiver (HB-
ICR). Signal and local oscillator (LO) laser diodes 

Fig. 1.   �Trends in capacity growth in digital coherent experiments for real-time transmission with DSP-ASIC-integrated optical 
transponders.
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Fig. 2.   Experimental setup for triple-band WDM transmission with DSP-ASIC-integrated real-time optical transponders.
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(LD) sources were external cavity lasers for the S 
band and integrable tunable laser assemblies for the 
C and L bands. The modulation formats of the main 
signal were 67-GBaud PDM-16QAM with a net rate 
of 400 Gbit/s and 66-GBaud PDM-32QAM with a 
net rate of 500 Gbit/s, which were generated in the 
optical transponder for each WDM band. The carrier 
frequency of the main signal was set to 1467.233–
1524.304 nm in the S band, 1530.529–1567.133 nm 
in the C band, and 1570.005–1607.897 nm in the L 
band.

The WDM signals in the S, C, and L bands were 
generated using amplified spontaneous emissions 
from the thulium-doped fiber amplifiers (TDFAs) 
and erbium-doped fiber amplifiers (EDFAs). The 
power level of the WDM signal was equaled using a 
gain equalizer (GEQ) on the basis of flexible-grid 
wavelength selective switches (WSSs) with liquid 
crystal on silicon (LCOS). TDFAs for the S band and 
EDFAs for the C and L bands were used in this 
experiment. The main signal from the real-time opti-
cal transponder and WDM signal for each band were 
multiplexed in a LCOS-based flexible-grid WSS. The 
WDM grid in this experiment was set to 75 GHz. The 
WDM signals in the S, C, and L bands were then 
multiplexed in a WDM coupler with a total band-
width of 16.95 THz (7.725, 4.650, 4.575 in the S, C, 
and L bands, respectively), as shown in Fig. 3. The 
total number of WDM signals was 226 channels (103, 
62, and 61 channels in the S, C, and L bands, respec-
tively). The triple-band WDM signal was transmitted 
through the transmission line of a 101-km large-core 
low-loss fiber, which is compliant with ITU-T (Inter-
national Telecommunication Union - Telecommuni-
cation Standardization Sector) G.654.E, with an 
effective area (Aeff) of 125 μm2. We used a forward 
(FW)-pumped distributed Raman amplifier (DRA) at 
a wavelength of 1370 nm and a backward (BW)-

pumped DRA at 1390 and 1430 nm.
The triple-band WDM signal was divided into each 

S-, C-, and L-band WDM signal after 101-km optical 
fiber transmission. The WDM signals were then 
amplified using a TDFA for the S band and EDFAs 
for the C and L bands at the receiver side to compen-
sate for the transmission losses. After filtering the 
main signal for each S, C, and L band using a LCOS-
based flexible grid WSS, the signal was coherently 
detected with the HB-ICR with the optical LO. 
Finally, the received signal was equalized, demodu-
lated, and decoded in the DSP-ASIC [3].

3.   Experimental results of over 100-Tbit/s  
real-time transmission

In the ultra-wideband WDM configuration, inter-
band stimulated Raman scattering (SRS) affects the 
WDM signals. A nonlinear interaction is caused by 
inter-band SRS in bands with a gap of around 100 nm 
for ultra-wideband transmission systems; inter-band 
SRS causes a signal power transition from S- to 
L-band signals in triple-band transmissions [6]. 
Therefore, we evaluated the effect of inter-band SRS 
with the 16.95-THz triple-band WDM configuration. 
The fiber loss at 101 km and transmission loss with 
inter-band SRS are shown in Fig. 4. The signal-
power transition was mainly observed from the S 
band to the L band.

Figure 5 shows the experimental results in 101-km 
real-time triple-band WDM transmission. The FW- 
and BW-pumped DRA were applied for the transmis-
sion line to compensate for the excess power loss in 
the S band caused by the inter-band SRS. As Fig. 5(a) 
shows, the WDM signal power in the S band was 
drastically increased by the Raman amplifiers with 
sufficient Raman amplification gain. To evaluate the 
signal performance, we used the pre-forward error 
collection (FEC) quality (Q) margin, which is defined 
by the difference between the measured pre-FEC Q 
factor in the experiments and the required pre-FEC Q 
factor to achieve an error-free post-FEC bit error rate 
(BER). We observed that the pre-FEC Q margins of 
all measured 226-channel WDM signals showed 
more than zero, as shown in Fig. 5(b). We also con-
firmed that the post-FEC BER of all signals were 
error-free in this case. That is, in this setup, we 
achieved 112.8-Tbit/s (= 500 Gbit/s × 224 λ + 400 
Gbit/s × 2 λ) transmission using real-time optical 
transponders.

The long-term signal performance under the 16.95-
THz triple-band WDM condition was evaluated  

Fig. 3.   WDM signal spectra of 16.95-THz bandwidth.
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during transmission in 101-km fiber when applying 
the FW- and BW-pumped DRA. As shown in Fig. 6, 
we obtained stable signal-transmission performance 
at the center channels of S-, C-, and L-band signals 
with small pre-FEC Q-factor fluctuations of less than 
or equal to 0.036, 0.025, and 0.037 dB, respectively, 
within continuous measurements for 60 min. During 
the stability test, we also confirmed error-free opera-
tion after FEC decoding.

4.   Conclusion

We reviewed trends in ultra-wideband WDM trans-
mission techniques to expand the capacity of optical 
transmission systems and NTT’s latest R&D in the 
field. With the combination of ultra-wideband WDM 
transmission and digital coherent technology using 
the state-of-the-art DSP-ASIC, we successfully dem-
onstrated the first ever over 100-Tbit/s real-time 
transmission. This technology is promising for use in 

Fig. 5.   �Experimental results: (a) WDM optical spectra with and without FW- and BW-pumped DRA and (b) pre-FEC Q margin 
after 226-channel triple-band WDM transmission through 101-km fiber transmission with FW- and BW-pumped 
DRA.
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Fig. 4.   �101-km fiber loss and transmission loss with inter-band SRS.
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future optical transport network systems.
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