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1.   Introduction

The advent of modern artificial intelligence and 
machine learning (AI/ML) applications and cloud 
services have led to tremendous information and 
communication technology (ICT) growth, enabling 
unprecedented processing capabilities. However, as 
processing and datacenter communication speeds 
continue to increase, so do their power consumption 
and associated CO2 (carbon dioxide) emissions [1, 2]. 
To support ultrahigh speeds but at reduced power 
consumption, we developed membrane distributed-
reflector lasers with integrated optical feedback for 
energy-efficient photonics-electronics convergence 
within NTT’s Innovative Optical and Wireless Net-
work (IOWN) project [3, 4].

With our membrane lasers with integrated optical 
feedback on silicon dioxide/silicon (SiO2/Si) sub-
strates, we could achieve unprecedented directly 
modulated laser (DML) bandwidths of ~60 GHz [5, 
6] and spike-processing rates (i.e., inter-spike rate) of 
10 GHz [7, 8] with sub-pJ/bit and ~pJ/spike laser-
operating energies (see Fig. 1). We also achieved the 

world’s fastest DML bandwidth of ~108 GHz by 
integrating our membrane distributed-reflector lasers 
with integrated optical feedback on silicon carbide 
(SiC) substrates [9–11].

2.   Membrane distributed-reflector lasers with 
integrated optical feedback

Our membrane laser structure for lasers fabricated 
on SiO2/Si substrates is based on a distributed-reflec-
tor longitudinal design that includes a middle uni-
form-distributed feedback (DFB) section sandwiched 
with an 80-μm-long back distributed Bragg reflector 
(DBR) mirror (DBR-r) and 200-μm-long front DBR 
mirror (DBR-f). In this structure, the DBR-r is used 
to filter one of the two DFB modes for single-mode 
operation [12], and the DBR-f is used to generate 
optical feedback and side-modes for enacting photon-
photon dynamics [5, 6, 9–11] (see Fig. 2). Very low 
operating-power consumption was achieved with our 
heterogenous membrane III-V on Si technology, 
which uses a thin-film (<350-nm thick) III-V layer on 
a low-refractive index SiO2/Si substrate with a similar 
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low-refractive index SiO2/silicon oxide (SiOx) over-
cladding. This structure enables very strong trans-
verse optical confinement, which leads to both low 
operating power and high-speed dynamics. Other 
advantages include cost reduction by using large Si 
wafers and mature processes, co-integration capabili-
ties with Si photonics and other integrated photonic 
platforms, and coupling to fibers via SiOx-based spot-
size converters.  

3.   Photon-photon resonance for short-reach 
communication links

Although our previously developed membrane 
DMLs could achieve high (~20 GHz) bandwidths 
with sub-pJ/bit energy consumptions [12], there is an 

inherent trade-off between further DML bandwidth 
improvement and power consumption since the 
relaxation oscillation frequency (fR) is proportional to 
the square-root of the bias current (Ib) above a thresh-
old (Ith), i.e., fR ∝ (Ib – Ith)1/2. This limitation can be 
alleviated by introducing a photon-photon resonance 
(PPR) at high frequencies (see Fig. 2) on the basis of 
the optical-feedback-generated side-modes. 

By using the PPR effect, we could effectively triple 
the bandwidths of the membrane DML-on-Si reach-
ing ~60 GHz [5] while maintaining the same power 
consumption. This enabled us to achieve 112-Gbit/s 
short-reach transmissions for datacenter applications 
[5, 6] (see Fig. 3), and the first 400-Gbit/s-class link 
using a single >100-GHz-bandwidth DML-on-SiC 
[10]. We also demonstrated the ability to use the PPR 

Fig. 1.    Recent records of 3-dB bandwidths of DMLs [5, 6, 9–11] (left) and spike-processing rates of integrated photonic 
spiking neurons [7, 8] (right).

InP: indium phosphide
LD: laser diode
MRR: micro-ring resonators

PCM: phase-change materials
Si(N): silicon nitride
VCSEL: vertical cavity surface emitting laser

Fig. 2.   Membrane distributed-reflector laser with integrated optical feedback [5–11]. 

MQW: multiple quantum well 
SSC: spot-size converter
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effect at operating temperatures of 50℃ and above, 
which enabled us to sustain >100-Gbit/s operation for 
short-reach links using a membrane DML-on-Si at 
50℃ [5, 6], and more than 100-GBaud modulations 
under uncooled (85℃) conditions using a membrane 
DML-on-SiC [11]. 

4.   Spiking membrane laser neurons

One of the most promising neuromorphic comput-
ing architectures in terms of energy-efficiency and 
scalability is the hardware implementation of spiking 
neural networks (SNNs) due to the unmatched noise-
tolerance and event-driven capabilities of spike-
information processing. In particular, integrated 
photonics hold great promise in offering high-band-
width and scalable on-chip SNNs by taking advan-
tage of the tens-of-GHz speeds offered by modern 
opto-electronics and the numerous parallelization 
capabilities of photonics. Nevertheless, most pho-
tonic implementations of spiking neurons to date 
have been limited by physical processes that operate 
on nanosecond time scales or slower, leading to 
spike-processing rates (i.e., the factor that ultimately 
defines the processing speed) of around the GHz 
level or less. 

By using our membrane laser structure with inte-
grated optical feedback, we were able to demonstrate 
ultrafast spiking behavior with clearly defined thresh-

olds and spiking rates up to 10 GHz using 50-ps-long 
electrical pulses [7, 8] (see Fig. 4), overcoming previ-
ous speed limitations. This was achieved by taking 
advantage of the ultrafast photon-photon dynamics 
between two longitudinal modes (see Fig. 2). In such 
a case, a small input energy perturbation can tempo-
rarily excite a secondary longitudinal side-mode, 
which leads to power excitability of ultrashort (~ps 
long) output optical pulses, when the input energy 
perturbation exceeds an energy threshold. Moreover, 
our strong-confinement membrane-III-V-on-SiO2/Si 
structure ensured very low operating and threshold 
energies of ~pJ/spike and ~0.1 pJ/spike, respectively 
[7, 8]. 

5.   Summary and future plans

To meet the increasing demands on processing 
speeds of modern ICT and AI applications, while 
maintaining low operating energies for a sustainable 
and greener future within the IOWN project, we 
developed ultrafast and energy-efficient membrane 
distributed-reflector lasers on Si-based substrates 
with integrated optical feedback. With such lasers, 
we could achieve unprecedented DML bandwidths of 
~60 GHz and spike-processing rates of 10 GHz with 
~sub-pJ/bit and ~pJ/spike, respectively.    

Future developments will focus on multi-channel 
DML transmitters for 800-Gbit/s systems and beyond 

Fig. 3.   Transmission performance of membrane DML-on-Si [5, 6].

BER: bit error rate
E-O: electro-optical
FEC: forward error correction

HD: hard decision
NRZ: non return to zero 
PAM: pulse amplitude modulation



Regular Articles

43NTT Technical Review Vol. 21 No. 5 May 2023

by taking advantage of our previously developed 
techniques and technologies [13, 14]. We also plan to 
expand our spiking-membrane laser technology to 
multi-neuron SNN-PICs (photonic integrated cir-
cuits) and showcase their capabilities at solving prac-
tical computational tasks at unprecedented process-
ing speeds.
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