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1.   Introduction

By using superposition states of quantum matter, 
quantum computers are expected to enable high-
speed computing and new types of information pro-
cessing. However, superposition states are vulnerable 
to environmental noise and can easily change to 
another superposition state; therefore, quantum com-
puting research and development (R&D) has focused 
on the development of devices with long lifetime of 
the superposition state, exploration of efficient error-
correcting codes to reduce quantum noise, and analy-
sis of quantum algorithms and its computational-
performance limits.

Quantum computing has become a reality as these 
basic technologies have been established, and design-
ing and developing a large-scale quantum computer 
that combines the research results of these technolo-
gies have been active. NTT, in collaboration with 
RIKEN and others, developed a quantum computer 
using superconducting quantum bits (qubits)*1 and 
launched the first quantum-computer cloud service in 
Japan in March 2023. NTT has worked on the devel-
opment of technology to abstract, calibrate, and auto-
mate the control of qubits and provide quantum 
computing as a cloud service. This superconducting 

quantum computer and the efforts being made to 
demonstrate practical quantum computing are dis-
cussed in this article.

2.   Superconducting qubits

Since the matter around us obeys quantum mechan-
ics, any two distinct states can theoretically be treated 
as a qubit. However, there are a limited number of 
systems in which we can realistically maintain the 
superposition state for a long time. Superconducting 
qubits, which use the two lowest-energy states of 
superconducting circuits as qubits, are promising as 
highly scalable quantum physical systems because 
they can be integrated on a substrate and maintain a 
long lifetime of several hundred microseconds to mil-
liseconds. 

A photograph of integrated qubits on a chip is 
shown in Fig. 1. The circular pattern in the enlarged 
image on the left corresponds to a single qubit. The 
qubits are arranged two-dimensionally on the chip 
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and wired to the outside via the package. Since the 
superposition state of superconducting qubits is sen-
sitive to thermal noise, the chip is cooled to tens of 
millikelvin by placing it in a dilution refrigerator.

The superconducting circuit shown in Fig. 1 is a 
medium that stores information and does not have the 
ability to compute on its own. For this reason, as 
shown in Fig. 2, microwave pulses are sent to the 
qubits to control them. A typical quantum-computing 
program is written in a representation similar to a 
logic circuit, called a quantum circuit. There are two 
types of operations on a qubit in a quantum circuit: (i) 
unitary operations, which change the quantum state 
of the qubit without obtaining information about it, 
and (ii) readout operations, which obtain the state of 
the qubit as either 0 or 1. Both operations involve 
qubit control with multiple microwave pulses, the 
shapes of which are optimized for the characteristics 
of the qubit and the type of operation [1]. For readout 

operations, in addition to microwave controls, the 
shape of the response microwave pulse is analyzed to 
discriminate whether the qubit state is 0 or 1.

These microwave controls are experimentally 
implemented as follows. First, the waveform of the 
microwave pulse is designed as digital data with clas-
sical computers in accordance with the characteristics 
of the quantum-circuit elements and qubit character-
istics. These data are then transferred to control elec-
tronics installed at room temperature, which converts 
the digital signal to an analog signal that is output in 
the form of a microwave. The microwaves are trans-
mitted through wires to the qubits in the dilution 
refrigerator. The state of qubits can be read out from 
the signal returned from the qubit. Thus, the returned 
analog waveform is converted to digital data using 
the electronics, and the state of qubits is discriminat-
ed with a binary classifier. By subjecting the qubits 
arranged in a chip to the above-described processing, 

Fig. 1.   Appearance of superconducting quantum computer.
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it is possible to execute the desired computations and 
obtain results.

3.   Controlling qubits

To perform quantum operations on qubits, we need 
to design the pulse shape of the microwaves required 
to control the qubits as well as the binary classifica-
tion function for the readout operation. The optimal 
pulse shape depends on qubits’ properties such as 
lifetime and energy gaps. Since these properties differ 
from qubit to qubit, the control signal must be 
designed for each qubit. The characteristics of the 
qubits can be roughly estimated at the chip-design 
stage, but the exact value cannot be determined with-
out measurements on fabricated qubits. Therefore, 
the following two procedures must be established to 
carry out quantum computing with qubits. First, 
clarify the characteristics of the qubits through mul-
tiple measurements after cooling them in a dilution 
refrigerator. Second, in accordance with those char-
acteristics, create optimal pulse shapes for each type 
of operations and classification functions for the 
readout operation. The series of experiments that 
ensure that the manufactured qubits can be used for 
computation is called “calibration.”

We can calibrate qubits by hand as long as the num-
ber of qubits is small. However, as the number of 
qubits increases, it is not practical to design and cali-
brate them in an ad-hoc manner. Thus, we have made 
efforts to abstract large-scale quantum computing, 
experimentally reveal the challenges that impede 
scalability, and address them one by one. The three 
fundamental technologies that support the scalability 
of quantum computing shown in Fig. 3 are explained 
hereafter.

The first challenge in scaling quantum computers is 
the problem of qubit wiring. Qubits are typically 
arranged two-dimensionally on the chip and individ-
ually wired from the periphery of the chip so that 

control signals can be transmitted to the individual 
qubits. However, with this arrangement, the number 
of necessary wires increases quadratically with 
respect to the chip width, while the number of wires 
that can be routed to qubits increases linearly to the 
chip width; as a result, wiring becomes more difficult 
when the circuit scale increases. To solve this prob-
lem, RIKEN proposed a highly scalable method, with 
which the control wires are three-dimensionally con-
nected to the chip (Fig. 1), and in collaboration with 
Fujitsu, National Institute of Advanced Industrial 
Science and Technology (AIST), and National Insti-
tute of Information and Communications Technology 
(NICT), RIKEN has integrated qubits by using this 
wiring method [2]. 

The second challenge is to improve the efficiency 
of electronics. To control qubits with as few wires as 
possible, it is necessary to multiplex and transmit 
microwave signals with multiple frequencies and 
waveforms with a single wire. If expensive measure-
ment equipment is used for each qubit to achieve this 
control, the scalability of the quantum computer 
becomes impractical in terms of cost and size as the 
number of qubits increases. The developed supercon-
ducting quantum-computer system uses the electron-
ics optimized for controlling qubits developed under 
the leadership of Osaka University and others. 

The third challenge is to write software to effi-
ciently control and calibrate the qubits. As mentioned 
above, the method of manually characterizing qubits 
is known, but it is impractical to manually calibrate a 
large number of qubits. Since the characteristics of 
qubits and their controllers change over time, the 
quantum computer cannot be operated accurately if 
calibration takes too long. NTT and RIKEN have 
constructed a platform for controlling multiple elec-
tronics in parallel and systematically measuring 
qubits. Using this platform, NTT and RIKEN have 
also written software and protocols for automating 
the parallel and accurate calibration of multiple 

Fig. 3.   Fundamental technologies supporting scalability.
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qubits.

4.   System abstraction and operation

The above-mentioned superconducting quantum-
computer system provides the fundamental technolo-
gies to control the integrated qubits. However, to 
operate this system continuously as a cloud service, 
we need to accumulate the knowledge to maintain its 
stable operation. We also must create a framework for 
providing the service to users. The above-mentioned 
platform for measuring qubits works well when the 
qubits are manufactured ideally. In practice, however, 
calibration often fails for a variety of reasons. Causes 
of this failure range from human error, such as wrong 
wiring, to manufacturing problems, which cause the 
characteristics of the qubits to deviate so much from 
the designed values that they cannot be controlled. As 
the system is scaled up, the more difficult it becomes 
to identify the type and location of the cause of fail-
ure, and practical operation of the quantum computer 
becomes difficult. The software that oversees the 
entire system is therefore expected to not only oper-
ate the system in a normal state but also accurately 
report the cause of any anomalies at the earliest pos-
sible stage. Since there are countless types of abnor-
mal cases, it is not easy to completely automate this 
procedure. Even so, NTT and RIKEN have accumu-
lated knowledge during the development period and 
built a software system to efficiently find typical fac-
tors.

To provide this quantum-computing system as a 
service, it is also necessary to establish a web service 

to make it easier for users to use quantum computers. 
In the current design of the control software, the 
lowest-level representation of the program that con-
trols the qubit is the waveform information of the 
microwave that controls the qubit. This representa-
tion is convenient to experimentally investigate the 
characteristics of qubits, but it is not realistic for users 
to describe their computing tasks with pulse shapes. 
The developed quantum computer platform provides 
two methods: a job-description method for directly 
designing the shape of a pulse for the developers of 
quantum computers and a method for specifying a 
program in the description of a quantum circuit for 
the users of cloud service. To provide quantum com-
puting as a cloud service, Osaka University, RIKEN, 
and NTT collaborated to build the system shown in 
Fig. 4. Through this system, the user sends a program 
described in quantum circuits at the front end, the 
back-end service executes calculations using qubits 
with the latter method, and the measurement values, 
which identify measurement data, are returned to the 
user.

5.   Future developments

Although the current cloud service is a milestone in 
the integration of qubits, many obstacles still have to 
be overcome before a practical quantum computer 
can be implemented. As shown in Fig. 5, NTT is 
developing technologies for a fault-tolerant quantum 
computer in parallel for future practical applications. 
The largest problem with today’s quantum computers 
is their large noise. The best currently available 

Fig. 4.   Overview of our cloud service.
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qubits have about 0.1% error probability per gate 
operation, so it is impossible to reliably run large-scale 
quantum algorithms. It is therefore necessary to 
develop a technology to encode qubits using quan-
tum-error-correction technology*2 that will execute 
repetitive error correction during computation and 
reduce the effective error rate [3]. If quantum-error-
correction technology is developed, the errors and 
variations in the characteristics of qubits can be 
absorbed to some extent; accordingly, it will be pos-
sible to design and build a highly scalable quantum 
computer. 

NTT is collaborating with various research insti-
tutes to establish a computer architecture for quantum 
error correction [4–8]. When we build an architecture 
under the assumption of error correction, the basic 
instruction set is defined by the characteristics of the 
error-correcting code rather than the device. There-
fore, new compilers and software targeting fault-tol-
erant quantum computers are also needed. NTT con-
structed a compiler for long-term fault-tolerant 
quantum computing and proposed methods for opti-
mizing it and software for evaluating it [9, 10]. The 
left side of Fig. 5 shows the actual designed program 
displayed as a three-dimensional graph during com-
piler optimization.

NTT’s next goal is to integrate these system stacks 
we have built thus far with qubits to demonstrate a 
fault-tolerant quantum computer. To create a system 
that incorporates error correction and can process 
instructions at high speed as a computer, the fusion of 
physics and computer science is more essential than 
ever before. NTT will study the design of computers 
on the basis of cooperative design that integrates soft-

ware and hardware in these cross-cutting fields. In 
doing so, we will lead the world in envisioning the 
future of practical quantum computers.
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*2 Quantum error correction: A means of effectively reducing the 
probability of errors occurring in the logical qubit by represent-
ing a small number of logical qubits using multiple qubits with 
small error probability.
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