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1.   Two technologies necessary for controlling a 
sound space

Thanks to technological advances, the sound spac-
es surrounding us are evolving to become more con-
venient and comfortable. For a sound space, it is 
necessary to be able to block out the sounds one does 
not want to hear and transmit only the sounds one 
wants to hear, and manufacturers are introducing a 
variety of wearable products, such as earphones, to 
meet this need. However, these products have not 
been able to solve the following two major problems. 

The first problem is the heavy strain on the ears 
when earphones are worn for long periods. Techni-
cally, blocking the ear is the most-effective (and 

cheapest) way to block out unwanted sounds, and 
most earphones with such a function are “in-ear” 
earphones, which—as the name suggests—are insert-
ed into the ear canal. Long-term use of in-ear ear-
phones can increase stress on the user due to pressure 
and increase the risk of ear-canal problems [1], and 
such issues raise concerns about the health of the 
ears, which are fundamental to human social activi-
ties. It can therefore be said that it is necessary to 
devise technology for controlling the sound space in 
a manner that blocks sounds the one does not want to 
hear without blocking one’s ears.

The second problem is that in addition to the sounds 
one wants to hear, the sounds one must hear are not 
adequately considered. People can react and respond 
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to things that are happening in places invisible to the 
eye by hearing sounds from those places. For exam-
ple, a person can avoid a bicycle approaching from 
behind by listening for the sound of the bicycle’s 
ringing bell. These devices block out noise that does 
not need to be heard and must-hear sounds, and the 
person cannot always hear the sounds necessary for 
detecting danger. In other words, the ear loses its 
essential safety function of hearing sounds that must 
be heard. It can thus be said that the control of the 
sound space is required to ensure not only one hears 
the sounds one wants to hear but also one hears the 
sounds one must hear. 

2.   Two technologies for controlling the sound 
space in a vehicle: active noise control and sound 

event localization and detection

For vehicles, the above-described technical require-
ments are more pronounced than in other cases. 
Wearing a wearable device that blocks the ears is not 
only a possible violation of the Japan’s Road Traffic 
Act but also a violation of certain other regulations. 
To create a comfortable sound space around a person 
traveling in a vehicle while ensuring their safety, it is 
thus necessary to be able to block the sounds one does 
not want to hear without blocking one’s ears. The 
blocking of external sound with the vehicle’s body 
and helmet, the increase in external noise including 
road noise while moving in a vehicle, and the fact that 
a vehicle is moving faster than a human make it dif-
ficult to hear sounds necessary to avoid danger, and 
that difficulty can be a cause of accidents. Conse-
quently, the necessity to be able to hear the sounds 
that need to be heard is even greater, especially for 
advanced-safety vehicles (ASVs), which are essential 
for enhancing safety.

To meet the above-mentioned technological 
demands, we have been researching and developing 
elemental technologies for a Personalized Sound 
Zone (PSZ) that are highly integrated with spot-
sound-reproduction technology and acoustic extend-
ed-reality (XR) technology. In this article, active 
noise control (ANC) technology, which suppresses 
noise without blocking the ears, and sound event 
localization and detection (SELD) technology are 
introduced (Fig. 1). SELD technology makes it easier 
to hear must-hear sounds to avoid danger even in 
environments where it is difficult to hear surrounding 
sounds. 

3.   ANC technology suppresses noise without 
blocking the ears

ANC technology for blocking sounds one does not 
want to hear without blocking the ears is explained. 
As mentioned above, popular earphones generally 
cover the ears to block sounds outside the ear. How 
commonly used in-ear earphones block sounds is 
shown in Fig. 2(a). In-ear earphones are worn by 
inserting them into the ear canals. They act like ear-
plugs by blocking the ear canals in a manner that 
makes it difficult to hear sounds outside the ear.

Sounds outside the ear, however, cannot be com-
pletely muted. Accordingly, as shown in Fig. 2(b), 
two microphones (a reference microphone and error 
microphone) are fitted inside the earphone. On the 
basis of the sounds detected from moment to moment 
by these microphones, ANC reproduces sounds from 
the cancellation loudspeaker that eliminates the noise 
entering the ear. Therefore, sound-insulation perfor-
mance improves. The reference microphone detects 
the ambient noise that is to be blocked, and the error 
microphone detects any sound missed by ANC  
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Siren sound
“The sound of the siren
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Fig. 1.   Example applications of PSZ technology in vehicles.
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processing in the ear.
How to mute noise without covering the ears in the 

manner described above is considered. To avoid 
blocking the ear, the earphone loudspeaker must be 
positioned apart from the ear. However, a small loud-
speaker, such as the one in an earphone, does not 
produce sufficient sound output, so a larger loud-
speaker is required. The above-mentioned reference 
and error microphones should also be placed away 
from the ear because placing them near the ear, in the 
manner of in-ear earphones, would block the ear. 
Such a system is illustrated in Fig. 2(c).

In consideration of the above circumstances, to 
suppress ambient noise without blocking the ear, it is 
necessary to cancel noise waves at the ear by using a 

loudspeaker and microphone placed apart from the 
ear. This configuration, however, faces the following 
three major problems: 

(1)  Control stability. The sound emitted by the 
loudspeaker (apart from the ear) to cancel out 
the noise is recorded by the reference micro-
phone (which should record ambient noise 
only); as a result, so-called “howling” (also 
called “feedback”) occurs.

(2)  As shown in Fig. 2(b), in-ear earphone ANC 
can correctly detect noise heard in the ear 
because the microphones are located near the 
ear entrance. On the contrary, as shown in 
Fig. 2(c), when the microphones are apart from 
the ear, they cannot correctly detect the noise 

Fig. 2.    (a) How in-ear earphones reduce noise. (b) How ANC works in in-ear earphones. (c) ANC that does not block the 
ear.
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heard in the ear, and ANC outputs incorrect 
sound.

(3)  Commercially available loudspeakers and 
computers take time to record and play back 
sound; thus, while the cancellation sound is 
being generated, the noise reaches the ears 
before being canceled. It is also undesirable to 
use large amounts of electricity in a vehicle’s 
interior, so it is necessary to save power. Digi-
tal signal processors (DSPs) have convention-
ally been used for such applications. For ANC 
that does not block the ears, however, the 
problem of exceeding the computational 
power of the DSP must be solved. To solve 
problem (2), it is generally necessary to con-
figure a large number of loudspeakers and 
microphones and implement signal process-
ing for various compensations. This configu-
ration requires a large amount of computation, 
and the cancellation sound cannot be generat-
ed in time. 

To solve problem (1), it is necessary to reduce the 
sound leakage from the loudspeaker to the reference 
microphone. To meet that need, we developed a loud-
speaker that applies the principle of the above-men-

tioned spot-sound-reproduction technology. The 
effect of reducing sound leakage is graphically shown 
in Fig. 3. This loudspeaker not only reduces the 
sound leakage to the entire surrounding of the loud-
speaker but also creates an area where the sound leak-
age is very small, especially in the plane parallel to 
the diaphragm of the loudspeaker. The red line indi-
cates the sound leakage of a conventional loudspeak-
er, and the other colored lines represent the amount of 
sound leakage from the loudspeaker using spot-
sound-reproduction technology normalized by the 
sound pressure in front of the loudspeaker. Compared 
with the conventional loudspeaker, the spot-sound-
reproduction loudspeaker suppresses sound leakage 
by several decibels to 30 decibels at 100 to 300 mm 
from the loudspeaker.

To solve problem (2), it is necessary to move the 
reference and error microphones closer to the ear. The 
spot-sound-reproduction loudspeaker reduces sound 
leakage, so by embedding it in the headrest of a 
vehicle, the reference microphone can be moved clos-
er to the ear. The reference microphone is then able to 
detect sounds similar to noise heard with the ear.

Unlike the reference microphone, the error micro-
phone does not suffer from the howling problem, so 

Fig. 3.   Effectiveness of sound-leakage-suppression loudspeaker.
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it can be placed closer to the ear than the reference 
microphone. However, it is impossible to place the 
error microphone near the ear without blocking the 
ear. Therefore, to estimate the noise at the ear with the 
microphone slightly away from the ear, signal pro-
cessing is required. This processing typically requires 
the placement of multiple error microphones, and it 
must be completed within a very short period (a few 
hundred microseconds) after the noise is detected by 
the reference microphone and before it reaches the 
ear.

For the above reasons, power-saving hardware that 
executes signal processing at high speed and with 
ultra-low latency is essential for ANC that does not 
block the ears. We solved this problem by applying 
general-purpose computing on graphics processing 
units (GPGPUs), which are widely used in the net-
work and video-processing fields, to acoustic pro-
cessing and optimizing it.

The principle of using GPGPUs for ANC is illus-
trated in Fig. 4. GPGPUs are known for their high 
speed, low latency, and low power consumption per 
unit of processing. However, as shown in Fig. 4(a), 
data cannot be directly input to and output from audio 
devices, and a central processing unit (CPU) must act 
as an intermediary between them, increasing process-

ing delay. Therefore, by using remote direct memory 
access (RDMA) technology, as shown in Fig. 4(b), 
the audio signals of the microphone and loudspeaker 
are connected directly to the GPGPU without going 
through a CPU. The method was optimized to achieve 
processing of large amounts of small data-transmis-
sion packets (frame bursts) not handled in other sig-
nals and a distinct real-time nature unique to acoustic 
processing, which cannot tolerate even a 1-µs delay.

The result of the above-described RDMA applica-
tion is hardware that can transfer acoustic data in 
about 1/50th the time required by conventional hard-
ware and process large amounts of acoustic signals in 
real time and with low power consumption. This 
hardware not only enables ANC that does not block 
the ears, which has been difficult to achieve with 
DSP, but also enables the introduction of deep-learn-
ing technology, which is said to be difficult to imple-
ment in ANC due to its large computational load and 
significant processing delays.

An example of a test vehicle equipped with these 
technologies is shown in Fig. 5. In the test vehicle, 
loudspeakers with the spot-sound reproduction func-
tion are installed on both sides of the headrests of all 
seats, in positions that do not obstruct the driver’s/
passenger’s line of sight, and reference and error 

Fig. 4.    GPU direct audio method for transferring data at high speed and low latency in short intervals with low power 
consumption.
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microphones are placed around the loudspeakers. The 
shape of the headrest is designed to prevent the  
spot-sound-reproduction capability from deteriorat-
ing due to the spot-sound-reproduction loudspeakers 
being mounted inside the seat’s headrests, thereby 
enhancing the accuracy of noise suppression near the 
ear. This configuration improves the comfort of the 
people inside the vehicle interior.

4.   SELD technology enables one to hear only the 
sounds one must hear

As mentioned above, ANC technology can sup-
press unpleasant sounds when the vehicle is running; 
however, all sounds detected with the error micro-
phones are subjected to suppression, which can lead 
to accidents by making it difficult to hear the sounds 
that must be heard to avoid danger. To make it pos-
sible to hear the sounds one needs to hear, it is there-
fore necessary to develop new sound-transmission 
technology. To meet this need, we focused on SELD 
technology.

SELD is overviewed in Fig. 6. SELD technology 
estimates when, where, and what happened from 
sound signals observed with microphones. By using 
this technology, it is possible to detect the sound 
(including its direction of arrival (DOA)) that the 
driver truly needs from the various sounds input into 
the microphones. SELD technology is now generally 
based on end-to-end deep-learning technology, which 
internally estimates the DOA corresponding to 

“where” and sound event detection (SED) corre-
sponding to “what.” 

Since SELD technology uses deep learning, it 
requires a large amount of data related to necessary 
sounds that must be heard for its training. For exam-
ple, an application of SELD technology—in which a 
siren is sounding in the driver’s blind spot—is shown 
in Fig. 6. In this situation, the siren is quickly detect-
ed, and the driver is notified of the direction of the 
siren so that they can take the appropriate evasive 
action. Ideally, sirens from all directions and in all 
blind spots should be recorded and used for training 
the deep-learning model while considering all loca-
tions and situations (surrounding vehicles, buildings, 
weather conditions, etc.). However, it is difficult to 
record such a large volume of sound data comprehen-
sively.

People can infer, to some extent, the direction of 
sound arrival, even in the presence of environmental 
differences and changes in sound due to self-motion 
[4–6]. In other words, a person can select the infor-
mation necessary to estimate the direction of sound 
arrival from the information contained in the sound. 
Given this fact, we considered enabling SELD tech-
nology to imitate this human ability [7–9].

We developed echo-aware feature-refinement 
(EAR) - comprehensive anechoic data and sparse 
multi-environment data (CASM) technology [2] and 
motion-aware feature-refinement (MAR) technology 
[3] to enable SELD technology to imitate such human 
abilities. These technologies enable SELD technology 

Fig. 5.   Example of implementing an ANC system that does not block the ears.

Test vehicleTest vehicle

Headrest loudspeaker Headrest loudspeaker 

Error mic.Error mic.

Reference mic.Reference mic.

Information-visualizationInformation-visualization
terminalterminal

Spot-sound-Spot-sound-
reproductionreproduction
loudspeakersloudspeakers

Visualization of noise-suppressionVisualization of noise-suppression Test vehicle

Headrest loudspeaker 

Error mic.

Reference mic.

Information-visualization
terminal

Spot-sound-
reproduction
loudspeakers

Visualization of noise-suppression



Feature Articles

NTT Technical Review 41Vol. 22 No. 6 June 2024

to operate robustly even when the environment 
changes or the user moves. It has thus become pos-
sible to apply SELD technology to mobile environ-
ments, such as cars, that were previously unrealistic 
at reasonable cost.

An overview of SELD technology for automotive 
applications applying EAR-CASM and MAR tech-

nologies is given in Fig. 7. The EAR-CASM technol-
ogy provides the neural network with echoes of 
sounds emitted from the SELD-equipped vehicle 
(e.g., the car’s running sound and sonar sound from 
its sensors) that are reflected to its surrounding as a 
cue for learning sounds not included in SELD tech-
nology’s training data. The “improved” SELD  

Fig. 6.   Overview of SELD technology.
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technology works like the human ear, i.e., it sup-
presses the effects of unknown environmental sounds 
from these echoes by using the sounds it has learned 
up to that time. Moreover, MAR reduces the effect of 
changes in sound related to the vehicle’s own motion 
by providing the neural network with various inputs 
from sensors (such as acceleration sensors fitted in 
the vehicle) and information cameras as information 
about the vehicle’s motion.

Regarding EAR-CASM technology, exhaustive 
recordings of sounds from various environments are 
no longer necessary, and SELD technology can be 
implemented at a realistic cost. By applying EAR-
CASM and MAR technologies in conjunction with 
ANC technology to ASVs, we have been creating a 
sound space for safe and comfortable transportation 
in which sounds one does not want to hear can be 
blocked—without blocking one’s ears, and sounds 
one wants to hear—as well as sounds one must 
hear—can be heard.
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