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Promote implementation of new technologies 
in-house and confidently propose our 

accumulated results and expertise

—What is the main role that the Technology Planning 
Department plays in the NTT Group’s technology 
strategies?

Resolving social issues is the mission of the NTT 
Group, and the mission of the Technology Planning 
Department is to formulate technology strategies and 
incorporate them into the business operations of our 
operating companies. When talking about NTT tech-
nology, some people may think of our research labo-
ratories, but the laboratories and the Research and 

Development Planning Department that oversees 
them are engaged in research themes ranging from 
basic research to practical application of future- 
oriented technologies. The Technology Planning 
Department formulates strategies for developing and 
introducing new technologies in the market as well as 
our laboratories’ technologies for NTT’s overall net-
work and information technology systems; imple-
ments such technologies at each NTT Group compa-
ny; and refines and introduces the technologies into 
society by using the peripheral information possessed 
by our operating companies’ employees. Our front-
line employees are exposed to a shower of peripheral 
information and accumulate experience and exper-
tise, which enables us to hone our technologies to the 

Becoming an Organization of 
Intuition by Being Exposed to a 
Shower of Peripheral Information 
from the Frontlines and Market

View from the Top

Kei Ikeda
Senior Vice President, 
Head of Technology Planning, 
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Abstract
The NTT Group is committed to solving social issues as a leading 

corporate group in the telecommunications business with a public 
responsibility. Its goal is to create a well-being society by building 
the world’s most-advanced and sustainable social systems and infra-
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point at which we can confidently propose to custom-
ers and thereby help solve their problems.

Making IOWN truly marketable

—You mentioned “a shower of peripheral informa-
tion.” What does that phrase mean?

My frequent use of the term “shower of peripheral 
information” was inspired by the book, “The 
Structure of Intuition” [1], written by Masakazu 
Nakayama, a former researcher of the Nippon 
Telegraph and Telephone Public Corporation. The 
book explains human’s senses and intuition from the 
viewpoint of cerebral physiology held at the time. To 
summarize the book’s point in simple terms, there are 
tens of thousands of times more information on the 
periphery of the information we want to know, and 
we absorb it without even knowing it. We also have a 
mechanism that suppresses the information uncon-
sciously absorbed and stored so that it does not over-
flow uncontrollably, but the information that over-
rides this mechanism leads to so-called intuition. In 
other words, when a person is curious and working on 
a wide range of things, it may not make sense at the 
time, but if they are consciously thinking about a 
problem in the first person, those things will combine 
and be expressed as a meaningful intuition. I believe 

this is a great strength that humans possess. If the 
various peripheral information possessed by individ-
ual employees in an organization could be bundled 
together, and if those individuals share the same 
awareness of a problem and work together, the orga-
nization evolves into one that has instinct. The 
shower of peripheral information is the very source of 
this intuition. The Technology Planning Department 
plays a central role in formulating the NTT Group’s 
technology strategies, and we conduct our daily work 
while aiming to be this ideal organization with intu-
ition. 

With this vision of an organization and sense of 
mission in mind, we are pursuing the widespread use 
of NTT’s Innovative Optical and Wireless Network 
(IOWN) as well as strengthening of our networks to 
counter communication failures and natural disasters 
by using a shower of peripheral information.

—The APN (All-Photonics Network) IOWN1.0 ser-
vice has been launched. Can you tell us about the 
importance of a shower of peripheral information in 
spreading IOWN? Also, how are your efforts to create 
a circular economy society going?

Simply put, the aim of IOWN is to apply the optical 
technology that has been cultivated in the world of 
telecommunications to the world of computers  



View from the Top

NTT Technical Review 3Vol. 22 No. 9 Sept. 2024

(signal processing) and bring ultra-low-power-con-
sumption servers to the market. Devices used in cur-
rent computers, such as central processing units 
(CPUs), graphics processing units (GPUs), and 
memory, operate using electrical signals, and these 
devices communicate with each other using electrical 
signals. By replacing the electrical signals with opti-
cal signals, we aim to significantly reduce power 
consumption. The key to achieving this is photonics-
electronics convergence devices, which requires 
software called a network operation system (NOS). 
Against this background, in December 2023, NTT 
agreed to invest in ACCESS Co., Ltd., which is a par-
ent company of IP Infusion that develops OcNos, the 
highly evaluated NOS in the global market.

One of the advantages of investing in ACCESS was 
that we are now able to draw a development roadmap 
in conjunction with marketers who are active at the 
forefront of the global market. There is a great benefit 
of having NTT researchers directly access informa-
tion on the frontlines of the market, that is, being 
exposed to a shower of peripheral information. 
Although we received harsh comments such as “the 
market doesn’t want that kind of functionality,” we 

have been able to form solutions that those global 
marketers say will sell. We are currently preparing for 
the first release of the network solutions. 

As IOWN advances from the concept stage to 
implementation, we will strive to make IOWN truly 
marketable by receiving a shower of peripheral infor-
mation.

The NTT Group announced its environment and 
energy vision “NTT Green Innovation toward 2040” 
in 2021, declaring to achieve carbon neutrality by 
FY2040 by reducing approximately half of its carbon 
dioxide (CO2) emissions with IOWN and reducing 
the remaining half by increasing the use of renewable 
energy sources. 

In line with this vision, NTT Anode Energy 
acquired the wind-power generation company Green 
Power Investment Corporation (GPI) in 2023. GPI 
has the capacity to generate two-million kW of 
renewable energy (equivalent to power generated by 
two nuclear power units), including those under 
development. With this acquisition, we have almost 
secured the renewable energy we need within the 
NTT Group. Going forward, we plan to supply 
renewable energy to customers outside the NTT 
Group. 

Renewable energy is, however, highly unstable and 
requires the capability of balancing supply and 
demand of electricity. In response to this requirement, 
NTT Anode Energy is working on stabilizing an elec-
tricity grid by combining an energy-management 
system that uses the latest information and communi-
cation technology of the NTT Group and storage bat-
teries. I also believe that we can contribute to the 
local production for local consumption of renewable 
energy through IOWN initiatives that I mentioned 
earlier. If technology can be established to link com-
puter devices by using optical technology, for exam-
ple, computing resources such as CPUs and GPUs in 
a datacenter in Hokkaido or Kyushu and storage in a 
datacenter in the Tokyo metropolitan area could be 
linked and operated as a single large computer. If the 
Kyushu area is sunny, computing resources in 
Kyushu can be used; conversely, if the Hokkaido area 
is sunny, computing resources in Hokkaido can be 
used. Through such utilization of resources, it 
becomes possible to match energy demand to fluctu-
ating supply of renewable energy.

To strengthen our efforts in the field of green trans-
formation (GX), we have launched a group-wide 
brand “NTT G×Inno (pronounced ‘geeno’).” G×Inno 
stands for “GX times Innovation” and expresses our 
desire to create innovation in the GX field and  
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contribute to achieving Japan’s goal of carbon neu-
trality by 2050. We will first decarbonize the NTT 
Group and our value chains. We will then propose 
GX solutions that leverage the expertise and achieve-
ments gained from these efforts to corporate custom-
ers, local governments, and other parties to contribute 
to achieving carbon neutrality throughout society. We 
aim to grow our business in the GX field and achieve 
over one trillion yen in sales by FY2030. 

IOWN and GX will play a critical role in maintain-
ing the irreplaceable global environment. Although 
we face many challenges ahead, we will continue to 
promote IOWN and GX initiatives while being moti-
vated by the desire to preserve the global environ-
ment.

The source of the NTT Group’s strength is the 
collective power of our employees

—Connectivity is a lifeline of our lives. What kind of 
measures are you taking against communication fail-
ures and natural disasters and to enhance network 
resiliency? 

I had only been in the Technology Planning 
Department for little more than a week when another 

company experienced a major communication fail-
ure. This was not someone else’s problem, and just as 
we were starting to consider countermeasures within 
the NTT Group, NTT WEST caused a large-scale 
communication failure. This incident prompted us to 
establish the System Failure Recurrence Prevention 
Committee consisting of chief technology officers, 
chief digital officers, and other executives from NTT 
operating companies, and the committee began 
investigating ways to create a more resilient network 
that would prevent such incidents from occurring or 
enable quick recovery if they did occur. However, 
even after the establishment of the committee, large-
scale communication failures continued to occur one 
after another at our operating companies. 

In response to this situation, in addition to imple-
menting our existing measures of conducting a com-
prehensive group-wide review of the apparent risks, 
we have embarked on measures to further improve 
reliability on the premise that unforeseen events are 
bound to occur no matter how many measures we 
implement to prevent recurrence. 

For example, we assumed extreme, abnormal cir-
cumstances that would not normally occur, such as 
two-thirds of the equipment suddenly going down or 
three times the amount of traffic flowing in, and we 
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asked each company to estimate what kind of impact 
such circumstances would have on their services. 
Through this activity, I was very encouraged by the 
fact that the answer to this difficult problem was 
found within the NTT Group. For example, the initia-
tives of one company were applied to address certain 
issues, while those of another company were applied 
to address other issues; in this way, a robust network 
was created throughout the NTT Group. Each operat-
ing company is exposed to different showers of 
peripheral information and seeks solutions on the 
basis of that information. The holding company is 
responsible for creating an organization that can gen-
erate new intuition by combining these intuitions in 
each company and rolling it out across the NTT 
Group.

—What is important to you as a top executive? What 
is your message to researchers, engineers, and cus-
tomers?

To take advantage of the shower of peripheral 
information, I practice a bottom-up management 
style rather than a top-down approach. I believe that 
the source of the NTT Group’s strength lies in how it 
brings together the information possessed by each 
individual. The NTT Group can become a stronger 
organization if we can collect knowledge and share it 
effectively even under the governance with some 
centrifugal force.

I joined NTT in 1992 as an engineer with the goal 
of becoming a specialist. However, I ended up some-
what of a generalist, and I even worked in the Human 
Resources Department at NTT EAST. Since I had 
more opportunities to meet with young employees 
through training work, I began to understand the 
organization as a whole. I was attracted to work in the 
field, and after consulting with my boss at the time, I 
was transferred to the Plant Department of a branch 
office. At that workplace, I witnessed highly moti-
vated senior colleagues. I was impressed by those 
who had developed their skills while being exposed 
to a shower of peripheral information in the field, 
who worked with pride at being promoted to the 
Tokyo division, and who were acutely aware that they 

were the ones supporting the facilities in the field 
with their extensive expertise.

I realized that the company was supported by peo-
ple who were willing to work hard, and I was con-
vinced that the company would be stronger if we can 
mobilize people with this kind of spirit. When I 
served as the head of the Plant Department at a 
branch office and branch manager, I visited the front-
line at least once a week to receive showers of periph-
eral information. This experience made me think 
about how to increase the psychological safety of our 
employees—without putting up walls—so that they 
can provide us with peripheral information without 
hesitation.

Last but not least, to engineers and researchers, let 
us keep in mind how our frontline employees, cus-
tomers, and the market view our technologies and 
achievements, and hone our intuitions by interacting 
with such people and receiving a shower of periph-
eral information.

I would also like to ask our customers and business 
partners to give us your honest opinions about the 
activities of our researchers and engineers. Receiving 
a shower of peripheral information from all of you 
sharpens our intuition and sensibilities. We will do 
our utmost to contribute to all your businesses 
through the technology we have refined in this way.

Reference

[1] M. Nakayama, “The Structure of Intuition: What Inspires Ideas,” 
Chuokoron-Shinsha, 1968 (in Japanese).
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NTT Technical Review 6Vol. 22 No. 9 Sept. 2024

Generating new knowledge through crossmodal 
approach and applying it to the biomedical field

—Can you tell us about the research you are cur-
rently conducting?

I am currently focusing on representation learning 
and basic research on biomedical informatics. I have 
been researching sound and image/video recognition 
and retrieval for a long time. The key point of this 
research is how to represent media information accu-
rately and efficiently as digital information, which 
involves representation learning, my first focus. I 
have recently expanded my research beyond accurate 
and efficient information representation to include 
information representation that can uncover hidden 

structures in data and support the discovery of new 
knowledge. My second focus, basic research on bio-
medical informatics, involves the application of rep-
resentation learning in the medical and health fields. 

Generative artificial intelligence (AI) based on 
large language models has been attracting attention. 
Generative AI also operates on the basis of the infor-
mation representation (a digital representation of 
information) of something and generates output 
appropriate to a given condition (e.g., a question in 
sentence form) while referring to the information 
representation. How to represent information is 
learned from large amounts of data. The power of 
large amounts of data is so overwhelming that it is 
beyond even the imagination of experts, and AI sys-
tems are being created that produce useful outputs, 

Creating Bio-digital Twins by Using 
Crossmodal Representation Learning

Front-line Researchers

Kunio Kashino
NTT Fellow, NTT Communication 
Science Laboratories

Abstract
Announced in November 2020, NTT’s Medical and Health 

Vision states that the company will strive to put biological simula-
tions using bio-digital twins (BDTs) into practical use to make 
effective use of medical resources, alleviate physical constraints 
of medical resources, provide continuous care from prevention to 
post-treatment, and provide precise care personalized for each 
individual. A BDT is a digital representation of a living organism, 
and the key to creating a BDT is how to express (quantify or sym-
bolize) the functions of the living organism—and the physical and 
chemical mechanisms behind them—as digital information. We interviewed NTT Fellow Kunio Kashi-
no of NTT Communication Science Laboratories, who has taken the challenge of creating a BDT, about 
the use of artificial intelligence in the biomedical field, stimulation and awareness in collaborative 
research across different disciplines, and his thoughts on the importance of striking a balance between 
what should be done and how it should be done.
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such as text, images, and video, that would have been 
unthinkable not long ago. However, some aspects of 
these systems are not fully understood; for example, 
it is not known why a system behaves in the way that 
it does or how specific information is represented 
within a system. The above-mentioned research on 
representation learning acknowledges this problem, 
and it can be said that it aims to achieve both the 
advantages of learning based on large amounts of 
data and the transparency of information representa-
tion. Therefore, if this research is successful, it should 
provide answers to questions such as how to optimize 
the size of AI systems and ensure the reliability of 
their output.

My research topics on representation learning 
include elucidation, analysis, construction, optimiza-
tion, and application of information representation. 
My goal is to establish a method of configuring an 
optimized information representation with a clear 
mechanism of action. To achieve this goal, I’m now 
focusing on extracting and using the relationships 
between different pieces of information. Let’s con-
sider the problem of image recognition as an exam-
ple. If image data are the only reference, the usual 
approach is to prepare a large amount of training data 
consisting of pairs of images labelled with the names 
of the objects depicted in each image and train the AI   
with that data. Although this approach is very power-
ful when it works, it cannot always easily create suit-
able training data and is not suitable when the way 
objects are named changes over time. However, when 
an image and its associated audio information are 
available, such as online videos, television programs, 
and everyday scenes, it is unnecessary to manually 
prepare training data; instead, it is possible to use the 
relationship between the image and audio as a clue to 
identify the image and even determine the semantic 
relationship (closeness of meaning) between the 
objects shown in the image. 

Our experiments have shown that if an AI system is 
given hundreds of hours of recorded sumo-wrestling 
broadcasts without any prior knowledge, it can iden-
tify frequently occurring (e.g., top 10) winning 
moves from only image and audio information with a 
reasonable degree of accuracy. As in this example, it 
is often the case that something is difficult to under-
stand by referencing just one type of data, but it 
becomes clear by referencing multiple types of data. 
The types of information are called “modalities,” and 
I believe that one of the keys to representation learn-
ing in the future will be to study these modalities and 
analyze their relationships with each other. We call 

this the “crossmodal approach.”
It is now possible to collect a large amount of vari-

ous types of information. In the field of medicine and 
biology, recent research and technological advances 
are gradually making it possible to analyze and cross-
check large amounts of different types of informa-
tion, such as genetic information, the cellular basis of 
behavior, and clinical test results. The increased 
deployment of the Innovative Optical and Wireless 
Network (IOWN) will further strengthen these 
advances. By clarifying the hidden relationships 
between information collected in this crossmodal 
manner and reflecting them in inferences and simula-
tions, I believe that—in the not-too-distant future—it 
will be possible to predict the state of a person’s 
health several years into the future and estimate the 
efficacy and side effects of drugs and treatment meth-
ods to a certain extent. I also believe that through this 
type of crossmodal research, we can create AI that 
generates new knowledge that humans have not been 
aware of. AI may also be able to demonstrate its cre-
ativity as a useful partner to humans in scientific and 
technological research.

—Applying crossmodal approach to biological infor-
mation leads to bio-digital twins, right?

Yes. Modeling of living organisms has been around 
for a long time, and you could even say that the his-
tory of medicine and biology is the history of model-
ing. Most such modeling was based on individual 
experiments and insights of experts. Living organ-
isms are, however, complex subjects, so creating 
detailed models by hand is naturally limited. To har-
ness the potential power of large volumes of or 
diverse data, technology that can automatically learn 
information representations is therefore important.

In November 2020, NTT announced its Medical 
and Health Vision to contribute to the effective use of 
medical resources, alleviation of physical constraints 
of medical resources, provision of continuous care 
from prevention to post-treatment, and provision of 
precise care personalized for each individual. The 
core concept is simulating living organisms using 
bio-digital twins (BDTs). Our AI telestethoscope 
introduced in the previous interview (August 2021 
issue) is one of the sensing tools used for actualizing 
this concept. Later, the Biomedical Informatics 
Research Group was newly established in the Media 
Information Laboratory of NTT Communication Sci-
ence Laboratories to support BDTs from the perspec-
tive of basic research on informatics, and I was 
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appointed as its leader. Although the basic activities 
of this group are concerned with creating new basic 
technologies for machine learning, signal processing, 
and pattern processing for a wide variety of informa-
tion, the group is also actively applying these tech-
nologies to biological information and developing 
new socially useful fields of application. We are col-
laborating with not only the Bio-Medical Informatics 
Research Center of NTT Basic Research Laborato-
ries and the Alliance Department of the Research and 
Development Market Strategy Division at NTT but 
also universities and hospitals that have unique 
strengths.

Let me introduce specific studies undertaken by my 
research team. We are collaborating with Sakakibara 
Heart Institute on high-precision simulation of the 
cardiopulmonary function. Heart disease ranks first 
or second among causes of death in many countries, 
and early detection and treatment as well as post-
treatment rehabilitation (exercise therapy) are known 
to be particularly effective. Exercise therapy, in par-
ticular, can dramatically improve five-year survival 
rates by having patients exercise at an intensity 
appropriate to the individual. However, the question 
is how to set the appropriate intensity of the exercise. 
Too little exercise will be ineffective; too much exer-
cise could be counterproductive or even dangerous. 
When exercise is prescribed, a test called cardiopul-
monary exercise testing (CPX) is therefore used to set 
the exercise intensity. However, CPX is not widely 
used because it requires the subject to exercise close 
to their limit. Given that situation, using data from 
Sakakibara Heart Institute, which has conducted the 
largest number of CPX in Japan, we used machine 
learning to create a model that can estimate CPX 
results from physical findings without actually con-
ducting a CPX. We hope that this model will enable 
more people across the country and around the world 
to receive appropriate exercise therapy. We are cur-
rently preparing to practically apply the model in the 
near future through various verifications and trials.

We are also working with the Premium Research 
Institute for Human Metaverse Medicine (PRIMe) at 
Osaka University on performance measurement and 
modeling of cardiac muscle cells by using induced 
pluripotent stem (iPS) cells. As many readers know, 
iPS cells have the ability to differentiate into cells of 
any type of tissues and organs by manipulating cells 
taken from human skin, blood, and other sources in a 
specific manner and culturing them. Osaka Univer-
sity is using this capability of iPS cells to study dis-
ease models using artificial cardiac muscle tissue. In 

other words, this study aims to explain the mecha-
nism of heart disease and develop treatment methods 
by culturing cells taken from heart disease patients 
with genetic factors, growing the cells into cardiac 
muscle tissue, and measuring their properties as car-
diac muscle, such as contractility and diastolic force. 
This is a physical disease model, but we are working 
on digitizing the model in collaboration with Osaka 
University while measuring contraction and expan-
sion forces. Among the many advantages of digital 
modeling, I believe the most important is the possi-
bility of creating a model of the heart (i.e., an organ) 
by synthesizing cardiac muscle tissue in digital space. 
The model connects the numerous pieces of available 
information about the heart with microscopic bio-
logical information about cells and genes (Fig. 1). It 
is currently difficult to physically construct organs 
with complex structures because the cell mass that 
can be produced in culture is small compared with an 
organ, i.e., a few millimeters to a few centimeters in 
diameter. In digital space, however, it may be possi-
ble to synthesize cell masses together and estimate 
their performance as an organ under certain condi-
tions and assumptions. I believe this will be a signifi-
cant step forward in improving treatment options.

Regarding research on multi-channel, multi-modal 
biomeasurement using the AI telestethoscope, which 
uses AI to analyze data collected from electrocardio-
gram electrodes, microphones, pressure sensors, 
acceleration sensors, etc. as well as sounds (such as 
heart and internal sounds) to infer physical conditions 
remotely (Fig. 2), we are aiming to create new use 
cases of the AI telestethoscope and improve its accu-
racy by inputting the measured data into a crossmo-
dal encoder/decoder and displaying explanatory text 
on the basis of the acquired information representa-
tion. In a joint research project with Kitasato Univer-
sity Hospital, we are currently verifying the practical-
ity of a stethoscope-type sensor device that is placed 
on the chest. The findings that we obtained have 
recently been published in a medical journal.

I am also pursuing research on the fundamentals of 
machine learning. During the cell-differentiation pro-
cess, for example, cells obtain different functions in 
accordance with the biological tissue, and it is impor-
tant to analyze, estimate, and model the original state 
of the cells (before cell-differentiation process) from 
observations at certain points in time. From a 
machine-learning perspective, the challenge is how 
to construct a model with high probability in a situa-
tion with many uncertainties. We are developing and 
verifying such a method.
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Overcoming barriers to collaborative research 
across different disciplines

—While the work you have described is basic 
research on technologies. What are the challenges 
toward practical use of these technologies?

First, from the perspective of research, I think the 

fact that many members of my research team—
including me—were not experts in medicine or biol-
ogy was a challenge. Collaboration across disciplines 
requires a certain amount of basic knowledge of dis-
ciplines different from us, and since the language and 
behavioral styles are often completely different, 
imagination and a willingness to compromise are 
required for successful collaboration. Although my 

Fig. 1.   Overview of a cardiovascular BDT.
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team members still face many challenges, they also 
enjoy surprises and new discoveries. 

From the perspective of practical application, when 
we are dealing with living body and medical care, we 
must ensure reliability in accordance with established 
rules, which is an area outside our expertise. Fortu-
nately, we have the cooperation of many people in 
this area, and I am grateful that we are gradually mak-
ing progress.

By understanding each other’s differences in 
common practice and culture, important things 

that people have in common will 
become apparent

—What do you keep in mind as a researcher?

It may sound surprising, but I try to be very con-
scious of social perspectives in my work, which is 
centered on basic research. NTT Group is becoming 
an ever more global corporate entity, but I have found 
that most of my contact with the world has been 
through participation in international conferences 
and meetings and other contacts within the research 
community. Recently, however, as I have come into 
contact with the field of biological information, I 
have come to think more about the lives of ordinary 
people living in various environments around the 
world.

Another point I try to keep in mind is the balance 
between what should be done and how it should be 
done. Which of these two questions is more important 
depends on the situation, but as far as the creation of 
new technology is concerned, I believe that both are 
important. I believe that the dynamism of a situation 
in which new methodologies increase what can be 
done and the pursuit of what should be done acceler-
ates the birth of new methodologies is the driving 
force for change in the world.

To add to my recent impressions, I have had more 
opportunities to come into contact with medical pro-
fessionals and been impressed by their sense of mis-

sion and sincere attitude toward matters. I feel that by 
sharing what is important with people from different 
disciplines and mutually understanding each other’s 
common practice and cultural differences, important 
things that people have in common will become 
apparent. This approach is similar to a mechanism in 
which essential information is brought to light 
through crossmodal information processing.

—What is your message to future researchers?

I would be happy to share with you the challenges 
and joys of creating something new. Let’s think about 
and focus on what is important and challenge our-
selves without being bound by common practice.
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AI agents that grow together in cooperation with 
humans enable support for more advanced 

creative endeavors 

—First, please tell us about your ongoing research.

I am currently working on “building human-artifi-
cial intelligence (AI) cooperative infrastructure with 
generative AI agents.” Simply put, this research aims 
to build a human-AI cooperative social infrastructure 
in which AI cooperates with humans in productive 
endeavors, just like humans. In the past, AI’s main 
task has been to provide people with an interactive 
experience and to perform people’s tasks on their 
behalf. In this research, however, AI provides a very 

different role from conventional AI, in which AI 
cooperates as a partner with people (doing things by 
joining forces) (Fig. 1). As a concrete example, an 
alter ego AI agent (Another Me [1]) that thinks like 
you and interacts with people and the environment is 
generated in cyberspace to grow and cooperate. This 
will enable productive endeavors that are more cre-
ative, such as the development of new services and 
research and development by or with AI agents in 
place of or in conjunction with people.

I believe there are three key technical challenges 
(Fig. 2) that must be addressed in order to achieve 
such a cooperative relationship. First, Technical 
Challenge 1 (AI understands the situation it is in now) 
is to enable AI to understand complex situations in 

A New World Emerging from 
Interactions between Humans and 
AI: Building Human-AI Cooperative 
Infrastructure
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Makoto Nakatsuji
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multiple dimensions, e.g., 5Ws and 1H, just like 
humans. Conventional AI is based on understanding 
the two-dimensional relationship between “response” 
and “speech” (two-dimensional attention model [2]), 
such as learning from a vast history of interactions 
with humans. In the future, however, I believe that AI 
can learn the relationship between speech and 
response in the context of knowledge topics, time, 
and location, thereby creating a multi-dimensional 
attention model that better fits human knowledge. In 
addition, AI’s knowledge distribution can be struc-
tured and visualized along a contextual axis, making 

knowledge sharing with people much easier. Specific 
results to date include improved precision, with 
response selection precision on multiple data sets 10 
to 30% higher than conventional methods.

Next, Technical Challenge 2 (relationships and 
knowledge grow in response to interactions with 
people and AIs) aims for AI agents to acquire and 
grow relationships and knowledge through autono-
mous communication using memories and knowl-
edge. The key is to digest and hierarchize actions like 
a human, rather than using the conventional AI 
approach of accumulating and mining big data. For 

Fig. 2.   Three Technical Challenges to achieve human-AI cooperation.

Technical Challenge 1: AI understands the situation it is in now

��To be able to understand situations in multiple dimensions (ex. 5Ws and 1H), just like humans,
instead of the traditional attention model that understands relationships in 2 dimensions

Technical Challenge 2: Relationships and knowledge grow in response to
interactions with people and AIs

��Not the conventional approach of accumulating and mining big data, but rather, as with humans,
digesting actions, hierarchizing them, and retaining them as long, short, and working memory to
make them consistent and grow over the long term 

Technical Challenge 3: Cooperating with people and autonomous distributed AI
for productive endeavors

��Cross-organizational productive endeavors that leverage the characteristics and experiences of 
individually grown AIs, rather than homogenous productive endeavors through cooperation with
general-purpose AI groups
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example, just like the human brain, memories and 
knowledge obtained from conversation records, etc., 
can be organized and managed in order of abstrac-
tion. This allows for reusability for future actions, 
learning and predicting the next action, and dynami-
cally reflecting it in prompts.

Technical Challenge 3 (cooperating with people 
and autonomous distributed AI for productive 
endeavors) aims to support productive endeavors that 
are more creative through the autonomous and dis-
tributed growth and cooperation of generative AI 
agents, which are Another Me or a substitute for 
humans. As an example of my past efforts, I have 
developed a group chat model for AI characters and 
am still working on the same type of research. In this 
model, the AI character learns the user’s habits and 
preferences, absorbs trends and general knowledge 
gathered from news and search engines, and attempts 
to exchange knowledge gathered from other AI char-
acters possessed by other humans. The AI character 
would then engage with humans and other AI charac-
ters to grow autonomously and create cooperative 
relationships. In other words, the vision of this tech-
nology is to leverage the experience and knowledge 
of individually grown AIs and apply it to current 
productive endeavors. In doing so, we aim to offer a 
wide variety of diverse and creative productive 
endeavors, which are very different from conven-
tional AI-based homogenous productive endeavors.

—What services have you been involved with?

At the time I started this research, I belonged to 
NTT Resonant. There, we were developing AI tech-
nology and providing services at the same time, so I 
have a lot of experience in creating systems to 
achieve a business plan. Specific services include 
“Love consultation AI Oshieru” [3] on “Teach! goo” 
and TV character AI “AI Nana-chan” [4] and “AI 
Kahoko” [5] that I helped produce for Nippon Televi-
sion Network Corporation in one of their projects. 
These have thankfully been very well received and 
used by many users, and have been featured in 
numerous media outlets. In response to this, there is a 
trend to provide services with interactive AI. The “AI 
x Design” [6] service was created, and the “AI suite” 
[7] service was developed from it. This was an 
attempt to stay ahead of the times and incorporate not 
only language, but also audio and video, and person-
alized AI technology to take advantage of business 
opportunities. About two years after its launch, I was 
reassigned to NTT laboratories, but AI suite is still 

provided by NTT DOCOMO.
Thus, during my time at NTT Resonant, I was 

engaged in research and development while provid-
ing a variety of services. In this context, I was trying 
to devise my own way to explore how to capture the 
market with AI technology. I was also trying to devise 
a system that would involve an autonomous cycle of 
quickly incorporating new technologies into our ser-
vices and generating revenue from them while con-
ducting further research. Consequently, for about 
seven years, I have been able to do both the AI busi-
ness and research and development, and several of 
my services have been used by a very large number 
of users. Behind the scenes, the algorithm, which was 
also accepted by top conferences such as Interna-
tional Semantic Web Conference (ISWC), Associa-
tion for the Advancement of Artificial Intelligence 
(AAAI), and International Joint Conference on Arti-
ficial Intelligence (IJCAI), was in action, achieving a 
high level of results in terms of both service and 
technology. In addition, some of the techniques still 
have the world’s highest response precision for 
response selection models in evaluations on Chinese 
data sets.

I am currently developing a new model of human-
AI cooperation, called the “miniature garden model” 
(Table 1). This model allows AI agents to deepen 
their knowledge through team discussions and con-
versations on behalf of humans, ultimately outputting 
business proposals and other documents. Each agent 
that has been generated has individual expertise and 
propagates knowledge by discussing with each other. 
In this way, there is a collaborative process that aligns 
the individual objective of each agent and the overall 
goal, and ultimately produces output across services.

Leveraging NTT laboratories’ extensive research 
results in the field of AI, where “speed” 

is important 

—What are some of the approaches that you value in 
your research?

In conducting research in the field of AI, I believe 
it is very important to keep up with the latest trends 
and seek out the next trend in research. For example, 
one of the reasons why the ChatGPT service has 
spread so much is because they were the first to intro-
duce their service to the market. In addition, we are 
able to find an answer to the question of whether the 
direction of the research is really correct by introduc-
ing a service to the market. If the service is embraced 
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by the world, we can use it as evidence of the value 
of further research. When I was a member of NTT 
Resonant, I would immediately launch AI services in 
line with the trends of the times, receive feedback, 
and think about the next research topic on a daily 
basis. In an environment where I could hear directly 
from the public and customers, I wondered daily 
what direction I should take my research in. In addi-
tion, AI suite was released very smoothly with the 
help of several supervisors and team members 
involved. Meanwhile, as a researcher, I was also fac-
ing a very difficult time with the emergence of Chat-
GPT and how to compete with a huge research orga-
nization.

This situation has made us think again about the 
importance of creating a mechanism to systematical-
ly bring products to market in a seamless and market-
oriented manner, utilizing NTT laboratories’ broad 
range of researchers and diverse research findings. In 
research where time is limited, new ideas come out 

one after another, but unless they are built quickly, 
experimented on, and patented as soon as possible, 
other competitors will get a head start. Especially in 
the AI field with its dizzying pace of change, such 
risks are always at hand, and I believe that there is a 
common understanding among researchers that they 
must proceed with their research with speed. In order 
not to fall behind in these circumstances, I am always 
mindful of keeping up with trends through papers and 
discussions with other researchers.

—Finally, do you have a message for researchers, 
students, and business partners?

When I joined NTT in 2003, research on AI, search 
systems, and the Semantic Web was gaining momen-
tum, and I felt that this field would be truly transfor-
mative. I was especially interested in NTT, which 
runs its business with research at the core. NTT labo-
ratories have an extensive pool of researchers in 
machine learning and AI, and in fact, NTT research-
ers make many presentations every year at top con-
ferences such as AAAI and IJCAI. AI technology is 
at the core of future business opportunities, and I feel 
that we have a great advantage in pioneering the AI 
business in Japan. NTT also has a wide range of oper-
ating companies that can create services that make 
use of this advantage, and above all, NTT’s network 
services and its ability to collaborate with end users 
are major advantages for the company. I believe it has 
great potential to be the next game changer, depend-
ing on how it is done. In addition, by being able to 
hear directly from the users of the service, I am able 
to summarize the results of my research in a paper, 
which motivates me as a researcher, so I feel that I am 

How to generate prompts for 
multiple people Generate multiple people at individual prompts

Open domain Possible

Strengthening of expertise Possible. Each agent possesses knowledge individually

Moving the generative agent Possible

Information transfer between 
generative agents Possible. Each agent possesses knowledge individually and propagates knowledge

Existence of roles/objectives of 
generative agent Generative agents have individual roles and objectives

Output production Coordinated role-based work between generative agents, aligning individual objectives and overall 
objectives, to produce output across services

Refining the generative agent Refine agent knowledge and service/team knowledge based on collaborative work of agents within 
and outside the service team

Table 1.   Characteristics of the miniature garden model.
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in a very fortunate environment in this respect.
I rejoined NTT laboratories in July 2023 and am 

currently conducting research through discussions 
with a diverse group of people. In doing so, I have 
noticed things from a new perspective and also felt 
the importance of taking seriously the results of 
research from the research field’s community. I think 
it applies to people around my age that if we can keep 
in mind to find the value of what other parties want to 
do in the community, I believe that the discussion will 
be productive and produce positive results. I also 
believe that it is necessary to take a broad perspective 
and move forward with research in a direction that 
produces results as a whole. I intend to do so and 
approach my research with utmost sincerity.

I believe it is important to continue to demonstrate 
real-world implementation ahead of the times, while 
also making an impact from the academic side by 
aligning milestones with top conferences and other 
events. I also believe that it is important to conduct 
creative research activities and exciting work that 
emerge from collaboration among researchers, 
whether in research or real-world implementation, 
and to build such relationships. If anyone reading this 
is interested, I hope we can collaborate at some point 
on research that will enhance the AI field.
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1.   A mathematical world woven by number 
theory, algebraic geometry, and 

representation theory

It is quite impressive that research into prime num-
bers was being carried out in Greece approximately 
2500 years ago. Two early important achievements 
were the proofs of the infinitude of prime numbers (in 
a constructive way), and the unique factorization of 
natural numbers into products of prime numbers. The 
original motivations for this research remain unclear. 
Until the invention of the RSA public-key cryptosys-
tem by Rivest, Shamir, and Adelman in 1977, there 
was no expectation for applications of number theory 
to engineering or society. In fact, it took more than 
300 years to establish RSA since the discovery of 
Fermat’s little theorem [1] (proved by Leibniz): “if p 
is a prime number and a is an integer, then ap ≡ a 
(mod p) holds,” which is one of the key technical 
results needed for public-key cryptosystems.

Number theory is the branch of mathematics that 
studies the properties of numbers, especially integers 
and number systems and structure derived from them 
[2]. These systems include algebraic number fields 
such as the rational number field, made up of all frac-
tions with the four basic operations (addition, sub-
traction, multiplication, and division); finite fields; 

local fields, such as the real number field; the set of 
numbers obtained as limits of sequences of rational 
numbers; and the fields of p-adic numbers. Number 
theory is said to have originated in the study of Dio-
phantine equations during the Roman Empire. Dio-
phantine equations are defined using polynomials 
with rational coefficients. Although it was desirable 
to completely solve them, this is generally difficult. 
Therefore, the interest was directed toward solutions 
that are rational numbers. This is probably because 
irrational numbers were thought to be incomplete 
numbers, being defined as limits of rational numbers. 

Although there is an infinite number of rational 
numbers, most real numbers are in fact irrational. 
Lumping them together would be like ignoring the 
dark matter in the universe. It would be unsatisfac-
tory as science. For example, the equation x2 – 2 = 0 
has an irrational solution, √2. Irrational numbers, 
such as √2 and 3√3, are called algebraic numbers and 
distinguished from transcendental numbers such as π, 
Napier’s number e, and 2√2. For √2 and 3√3, it is pos-
sible to compute √2 × 3√3 = 6√72 without going back 
to their definition as limits of rational numbers. In 
other words, the set of algebraic numbers defines a 
closed system of numbers within itself. Other types 
of numbers, such as √–1, have also been introduced 
and has enabled the expansion of the concept of  
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numbers. Even today, mathematicians are conscious 
of the problem of finding new classes of numbers that 
are broader than algebraic numbers. There is hope 
that we can find a broad, algebraically controlled 
class of transcendental numbers that have integral 
expressions called “periods,” such as pi, π = ∫x2+y2<1 
dxdy. This is known as the Kontsevich–Zagier con-
jecture. Although it seems difficult to solve the con-
jecture affirmatively, it is a sort of ideal guiding 
research. These attitudes toward numbers are also 
closely related philosophically to the three major 
classic Greek drawing problems of doubling the 
cube, angle trisection, and squaring a circle, which 
were proven unsolvable.

To determine whether a given equation has a ratio-
nal solution is a very delicate issue. For instance, the 
equation x2 + y2 = 1 (unit circle) has an infinite num-
ber of rational points, that is, with coordinates given 
by rational numbers. It is easy to confirm this by 
considering the intersection of a circle with a straight 
line that passes through the point (–1,0) and has a 
slope of tan θ/2 on a plane (using the double angle 
formula for trigonometric functions) (Fig. 1). How-
ever, there are no rational points on the circle x2 + y2 

= 0.999999, which is a slightly shrunk version of the 
unit circle. Speaking of subtleties, it took about 350 

years to solve Fermat’s conjecture (Last Theorem), 
which states that there are no rational points other 
than the obvious ones on xn + yn = 1 (n=3,4,5...). This 
could not have been achieved without rich theories 
that make full use of the best of modern mathematics 
to go beyond a pure algebraic perspective and tran-
scend the circle (which has the structure of an abelian 
group with addition as a product operation according 
to the addition theorem) to recognize the agreement 
between the zeta function determined locally from a 
geometric structure of an abelian group called an 
elliptic curve (Fig. 2) and a zeta function defined 
globally and related to representation theory.

The statement of problems in number theory, 
including the Fermat conjecture, are usually easier to 
understand than problems in other fields of mathe-
matics. The same can be said for combinatorics and 
graph theory. Some of the problems in combinatorics 
and graph theory, such as the construction of 
Ramanujan graphs, are deeply related to number 
theory and representation theory, and play a promi-
nent role in applications, including the construction 
of efficient networks. To solve these problems, a wide 
variety of methods are used, including using highly 
advanced modern mathematical tools (rather than just 
formulas and equations, they use abstract concepts 

Fig. 1.   Unit circle (the double angle formula for trigonometric functions).
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and techniques, e.g., considering the relations of 
objects with “arrows →”). For this reason, many con-
jectures (statements with supporting evidence but 
without mathematical proof) that appear sometimes 
simple remain unsolved. Two of the most well-known 
and challenging mathematical problems (both in 
number theory) are the Riemann Hypothesis, which 
has remained inaccessible for 165 years since its con-
ception, and the Birch and Swinerton-Dyer (BSD) 
conjecture, which describes the set of rational solu-
tions defining an elliptic curve. The Ramanujan and 
Weil conjectures, which were solved by Deligne 
thanks to Grothendieck’s innovations in algebraic 
geometry, led number theory research in the 20th 
century. The Taniyama–Shimura conjecture, which 
was the key to the Fermat conjecture, and the Lang-
lands program, which aims to construct a non-com-
mutative class field theory, give us grand dreams for 
the future. What is particularly noteworthy is that 
many of these can be expressed as the correspon-
dence of zeta functions and L-functions with different 
origins, including class field theory.

There is also active research into deriving number-
theoretic properties from abstract geometric objects, 
e.g., investigating rational points and integer points 
on orbits under dynamical systems determined by 
repeated composition of polynomials and rational 
functions and regarding finite-order points on figures 
with an abelian group structure as periodic points. 
For example, the far-unexplored Vojta conjecture in 
Diophantine geometry, which includes the Mordell 

conjecture (Faltings’ theorem), may be understood 
from this perspective.

It is thus not an exaggeration to say that number 
theory is voracious. It will use anything, including 
geometry, analysis, and probability theory, if neces-
sary to solve a problem. It actively draws on geomet-
ric inspiration to derive number-theoretic properties 
from the geometric properties of abstract figures, it 
makes extensive use of functions that precisely incor-
porate infinity while retaining invariance, and even 
incorporates measure theory into its scope of discus-
sion by closely observing distributions and density 
patterns that are familiar in probability theory. There-
fore, it does involve many fields of mathematics to 
advance its research but contributes to the develop-
ment of each of them. Bernhard Riemann’s research 
into analytic number theory, which began with the 
distribution of prime numbers, promoted the devel-
opment of the theory of complex functions with one 
variable. It was Carl Friedrich Gauss, the greatest 
mathematician of the 19th century, who said, “Math-
ematics is the queen of science, and number theory is 
the queen of mathematics.” This is usually taken to be 
a succinct expression of the beauty of number theory, 
but the true meaning may be about the brilliant use of 
a variety of mathematics to actualize this beauty.

The mathematical research covered in the Feature 
Articles in this issue [3–9] has as its background 
theories of arithmetic geometry, which explores 
problems in number theory using methods from alge-
braic geometry, arithmetic dynamics, dynamical sys-
tems of complex and p-adic fields, and automorphic 
forms, as well as representation theory. Representa-
tion theory is directly or indirectly related to number 
theory, mathematical physics, combinatorics and 
graph theory, special function theory, and differential 
equations and topology. For this reason, the NTT 
Institute for Fundamental Mathematics, to which the 
authors belong, is an organization that promotes 
research that is both cohesive and expansive in the 
field of mathematics, not only because of its appetite 
for number theory but also because of the central role 
of representation theory, a field that deals with sym-
metry and is at the intersection of algebra, geometry, 
analysis, and probability theory and has a wide range 
of applications.

We have put together these articles in the hope that 
readers will be provided a glimpse into some of the 
major trends in modern mathematics.

Fig. 2.   Elliptic curve: R = P + Q = −R’.
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2.   Number theory and arithmetic dynamics

2.1   Fermat’s Last Theorem
 Pierre de Fermat wrote “Cuius rei demonstratio-

nem mirabilem sane detexi. Hanc marginis exiguitas 
non caperet.” (I have discovered a truly marvelous 
proof of this theorem, which however the margin is 
too small to contain.) in the margin of his copy of 
Diophantus’ “Arithmetica.” After the annotated edi-
tion of “Arithmetica,” in which the problem he noted 
was published in 1670, many mathematicians chal-
lenged it for over 300 years until Andrew Wiles 
finally proved it in 1995. This theorem laid the foun-
dation for the development of arithmetic geometry.

Fermat’s Last Theorem: For any integer n greater 
than 2, there are no rational pairs (x, y) satisfying the 
equation (1) xn + yn = 1 with x, y ≠ 0.

When n = 2, the equation defines a circle with 
radius 1 centered at the origin. This circle has infi-
nitely many rational points (= points with rational 
coordinates). All these rational points can be repre-
sented as intersections of the circle with lines having 
rational slopes passing through (–1, 0). This means 
the rational points on the curve can be parameterized 
by a single parameter t, the slope of the line. The 
space of all such slopes is called the projective line. If 
we extend the coordinates to complex numbers, the 
figure defined by (1) becomes a real surface. The 
number of holes in this surface is called the genus. 
Geometrically, the projective line is a smooth curve 
of genus 0, while a smooth curve of genus 1 is known 
as an elliptic curve. Over complex numbers, an ellip-
tic curve looks like a torus (Fig. 3).

For n = 3 and n = 4, the curves defined by (1) are 
elliptic curves. Fermat proved the theorem for n = 4 

using a method called infinite descent, which was 
later extended to the proof of Mordell–Weil theorem. 
For n = 3, the proof was achieved by extending the 
world of numbers from rational numbers to numbers 
including the cubic root of unity and using the 
uniqueness of prime factorization in this larger num-
ber system. Today, this involves considering exten-
sions of a number field. Although unique factoriza-
tion does not hold in general number fields, Kum-
mer’s theory of ideal numbers, developed to over-
come this, became today’s ideal theory. The concept 
of field extensions laid the foundation for Galois 
theory and is crucial in modern number theory and 
arithmetic geometry. For m ≥ 5, the curve defined by 
(1) is of genus greater than or equal to 2, and 
Mordell’s conjecture (Faltings’ theorem) implies that 
such a curve has only finitely many rational solu-
tions.

Mordell’s conjecture (Faltings’ theorem): A smooth 
curve defined by polynomials with rational coeffi-
cients has only finitely many rational points if its 
genus is 2 or more.

This theorem is a remarkable connection between 
geometric information (the genus of the curve) and an 
arithmetic phenomenon (the finiteness of rational 
points). This result earned Faltings the Fields Medal 
in 1986. Although there is much more history to be 
discussed regarding Fermat’s Last Theorem, we con-
clude this section.

2.2   Elliptic curves
We mentioned that smooth curves of genus 0 can be 

parameterized by rational points, but it is not as sim-
ple for genus 1 elliptic curves. However, elliptic 
curves allow an “addition” where rational points can 

Fig. 3.   (From left) Sphere, torus, and double torus.
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be added together to produce new rational points. 
This means the set of rational points on an elliptic 
curve forms a group. This operation enables us to cre-
ate new rational points from known rational points. 
One of the key results is the Mordell–Weil theorem.

Mordell–Weil theorem: There exist finitely many 
rational points P1, P2, …, Pr, Q1, Q2, …, Qs on an 
elliptic curve E such that any rational point P on E 
can be uniquely expressed as P = n1P1 + n2P2 + … + 
nrPr + Qt (n1, n2, …, nr are integers, 1 ≤ t ≤ s), where 
Q1, Q2, …, Qs are points that become O (the identity 
element, i.e., P + O = P for any rational point P) 
under multiplication by some positive integer.

 
The number r is called the rank of the elliptic curve 

E, and Q1, Q2, …, Qs are called the torsion points of 
E. While Mazur has completely analyzed the group 
structure when restricted to torsion points, there 
remain many unresolved issues concerning the rank. 
One of the Millennium Prize Problems is the BSD 
conjecture, which examines the coincidence between 
the rank and order of the zero of the L-function. The 
existence or non-existence of elliptic curves with 
arbitrarily large ranks also remains an open problem. 
The current world record for the highest known rank, 
achieved by Elkies, is at least 28. It may be surprising 
at how small this record is, given the question of 
whether it is infinite.

 
2.3   Arithmetic dynamics

Problems in the field of arithmetic dynamics can be 
traced back to Northcott’s theorem in 1950, which 
states that a morphism defined over a number field on 
projective space has only finitely many rational peri-
odic points. However, the term “arithmetic dynam-
ics” started being used from 2000. It was clearly 
recognized as one field of study when the 2010 Math-
ematics Subject Classification (MSC2010) included 
11S82 Non-Archimedean dynamical systems and 
37Pxx Arithmetic and non-Archimedean dynamical 
systems. Broadly speaking, arithmetic dynamics 

studies the behavior of rational points under the itera-
tion of polynomials or rational maps defined over 
fields of arithmetic interest (such as p-adic fields or 
the field of rational numbers). Depending on whether 
the emphasis is more on number theory or dynamical 
systems, the nature of the research varies. From a 
number-theoretic perspective, a large goal might be 
to create a dictionary of analogies (or generaliza-
tions) between results about abelian varieties in num-
ber theory and their dynamical system analogs or to 
obtain new insights into arithmetic geometry through 
these analogies. Although detailed terminology can-
not be explained due to space limitations, the follow-
ing analogies are being considered (Table 1).

Problems regarding arithmetic dynamics over num-
ber fields are detailed in the article “Arithmetic Prob-
lems in Dynamical Systems” in this issue [3]. When 
the emphasis is placed on dynamical systems, the 
field appears somewhat more descriptive. There is an 
effort to trace similarities between non-Archimedean 
dynamical systems (such as those on p-adic fields) 
and complex dynamical systems, with applications to 
both complex dynamics and arithmetic dynamics. 
These topics are introduced in the article “How Num-
ber Theory Elucidates the Mysteries of Complex 
Dynamics—Viewed through Non-Archimedean 
Dynamics” in this issue [4] (Fig. 4).

Many books and surveys on arithmetic dynamics 
have been published, and extensive bibliographies 
[10] have been compiled. Simply glancing at the 
titles of the papers listed in these bibliographies 
reveals the rapid growth of this new field.

3.   Algebraic geometry and arithmetic geometry

3.1   A bridge between algebra and geometry
Solving equations is a fundamental but difficult 

task in mathematics. One of the ultimate goals in the 
field of algebra is to understand the behaviors of all 
equations of the form “polynomial(s) = 0,” called 
algebraic equations. Taking their “graphs” is a very 
important technique when studying algebraic equations. 

Table 1.   Dictionary between arithmetic geometry and dynamical systems.

Arithmetic geometry Dynamical systems

Space Orbit

Rational/Integral points on a space Rational/Integral points on an orbit

Torsion points on elliptic curves (Pre)Periodic points of rational maps

Mazur’s theorem Morton–Silverman’s uniform boundedness conjecture
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The graphs are “shapes,” for example, the graph of 
the algebraic equation x2 + y2 = 1 is nothing but the 
circle with radius 1 centered at the origin. The graph 
of y = m(x + 1) is the straight line with slope m pass-
ing through the point (–1, 0). The common solutions 
of the two equations are also expressed as the inter-
section of the two graphs (Fig. 1). Therefore, graphs 
transform algebraic problems into geometric ones, 
enabling us to benefit from the very rich intuition, 
tools, and ideas from geometry. 

The method of graphs was established by René 
Descartes in his book “Discours de la méthode” pub-
lished in 1637, and it is now taught in primary educa-
tion worldwide. However, there are limits to the 
intuitive method. If we increase the number of vari-
ables in the equations, their graphs are (usually) not 
able to be embedded into the three-dimensional 
spaces where we live; hence, we cannot “see” the 
graphs directly. Even if the graphs are (luckily) 
embedded in the three-dimensional space, their 
shapes could be too complicated to study just by see-
ing them with our eyes. After Descartes, many math-
ematicians made tremendous efforts over the centu-
ries to overcome these difficulties. Finally, we 
reached the huge theoretical system called “algebraic 
geometry.” The development of the theory of alge-
braic geometry throughout the 19th to the 20th centu-
ries was so rapid and innovative, and it had many 
irreversible effects on mathematics afterwards.

3.2    A mathematical paradigm shift—Which came 
first, functions or spaces?

A breakthrough in mathematics is often accompa-
nied with an important paradigm shift—in the case of 
algebraic geometry, it came from the relationship 
between spaces and functions. 

In modern mathematics, geometric objects are 
called “spaces.” The graphs of algebraic equations 
are also spaces. A function is a rule assigning a value 
to each point on a space. For example, we have a 
function f(x) = x + 1 on the real number line. The 
values of a function are just numbers, so we can 
define the addition, subtraction, and multiplication of 
functions on a space (we cannot define the division of 
functions in general since the value of a function 
could be zero, and the division by zero is not defined). 
An algebraic structure consisting of addition, sub-
traction, and multiplication is generally called a 
“ring.” In the above discussion, we have seen that the 
set of functions on a space has a natural structure of a 
ring. 

Let us consider the formula f(x) = 1/x, which associ-
ates to each x its reciprocal. In fact, this does not 
define a function on the entire real number line. 
Indeed, x = 0 does not have a reciprocal. However, if 
we consider the space obtained by removing the ori-
gin from the real number line, then f(x) = 1/x defines 
a function on it. This in turn shows that, if a function 
f(x) = 1/x lives on a space, the space cannot contain 
zero.

In this way, a space determines the ring of functions, 

Fig. 4.   Overview of research mentioned in this issue.
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and on the contrary, the structure of the ring of func-
tions reveals the property of the space. This phenom-
enon can be expressed, metaphorically, as follows: if 
we regard a space as a kind of a nation, then the func-
tions on the space could be thought of as the people 
living in the nation. If we have a nation, there are 
people living there and they are interacting with each 
other via “+, –, ×.” Conversely, if we want to know 
about the nation, it would be very effective to see the 
people there and how they interact.

On the basis of this observation, Alexander 
Grothendieck, one of the greatest mathematicians in 
the history of modern mathematics, boldly claimed 
that, “Any ring is the ring of the functions on a 
space.” In other words, he claimed that starting from 
any ring (which could be purely algebraic and could 
have nothing to do with geometry a priori), we can 
always find a certain space and regard each member 
of the ring as a function on the space. In fact, this is a 
vast generalization of Descartes’ idea of “taking 
graphs.” Given an algebraic equation, we can form a 
ring called the “residue ring” by a purely algebraic 
procedure, and the space associated with this residue 
ring recovers the graph of the algebraic equation 
(more precisely, the space is an algebraic variety, 
which is a geometric object that has richer informa-
tion than the classical graph).

Grothendieck established the above philosophy as 
a rigorous mathematical theory called the “scheme 
theory,” which rewrote the entire framework of clas-
sical algebraic geometry. His theory was developed 
on the basis of many methods and concepts from 
abstract mathematics developed in the 20th century, 
including categories and functors. 

3.3   Arithmetic geometry
The main purpose of Grothendieck’s scheme theory 

was to apply the method of algebraic geometry to 
number theory. One of the ultimate goals of number 
theory is to understand the properties of the ring con-
sisting of all integers. (It is a ring since the set of 
integers is closed under the addition, subtraction, and 
multiplication.) Thanks to the scheme theory, we can 
regard the ring of integers as the ring of functions on 
a space, hence can translate number-theoretic prob-
lems into geometric ones. The research field in which 
we study number theory using scheme theory is gen-
erally called “arithmetic geometry” (for more details 
about arithmetic geometry, see the article “Motives—
Abstract Art of Numbers, Shapes, and Categories” in 
this issue [5]).

Using the scheme theory, we can construct the the-

ory of geometry on the basis of a system of non-
intuitive numbers. For example, we often encounter a 
system of numbers in which 1 + 1 = 0 holds. Of 
course, this property does not hold in the world of real 
numbers. However, such a system of numbers is 
inevitable in the study of number theory, and even in 
many applications in science technologies. The 
scheme theory states that even in such a “strange” 
world of numbers, we can naturally consider nice 
geometry, making it possible to apply the method of 
algebraic geometry to information theory and cryp-
tography. Algebraic geometry and arithmetic geom-
etry stemmed from purely mathematical motivation 
and have been developed using many methods in 
abstract mathematics. However, surprisingly, they 
became a fountain of concrete applications in society.

Arithmetic geometry developed closely with alge-
bra, geometry, and analysis and became a mainstream 
of number theory. Interestingly, arithmetic geometry 
has provided many important concepts that have 
unexpected applications in different fields of science. 
For example, the theory of “weights,” which was a 
key to the proof of the Weil conjecture (an analogue 
of the Riemann hypothesis), became an essential 
basis of certain fields of theoretical physics, includ-
ing string theory and mirror symmetry. The theory of 
elliptic curves, which played a fundamental role in 
the proof of the Fermat conjecture, has been widely 
used in constructing post-quantum cryptography. 
Arithmetic geometry is relatively young in the histo-
ry of mathematics, and many innovations continue to 
occur. It will undoubtedly give us unexpected value 
in and outside mathematics in the next few centuries.

4.   Representation theory and 
automorphic forms

4.1   Group action
When mathematicians hear about representation 

theory, the first thing they think of is the action of a 
group on another object. When we think of groups, 
Évariste Galois, who died in a duel at the age of 20, 
comes to mind. He greatly simplified and generalized 
the proof of the Abel–Ruffini theorem, which states 
that “there is no formula for a general algebraic solu-
tion (a solution that can be expressed using the four 
arithmetic operations and roots) for equations of 
degree 5 or higher,” and used the forerunner of the 
group concept to characterize when a given equation 
has an algebraic solution. This theory is known today 
as Galois theory. Based on Galois theory is the monu-
mental achievement in class field theory of Teiji 
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Takagi, who studied under Frobenius in Berlin then 
under Hilbert and Klein in Göttingen at the turn of the 
19th century, for actualizing “Kronecker’s dream of 
youth (Kronecker’s Jugendtraum)” based on Gauss’s 
law of quadratic reciprocity. It can also be said that 
Galois theory is the pillar of the magnificent theoreti-
cal system now known as the Langlands program 
(conjecture/philosophy), which is aimed at develop-
ing a non-commutative class field theory. However, 
the definition of a group is quite simple, it is a set 
such that 1) there is a binary operation called “multi-
plication” satisfying the associative law, 2) an iden-
tity element exists, and 3) each element has an 
inverse.

Examples of finite groups are the familiar groups of 
symmetries of regular polyhedrons, the crystallo-
graphic point groups, symmetric groups that appear 
in the definitions of determinants, as well as general 
linear group GL(V), which is formed by regular (i.e., 
having the inverse) linear transformations on a finite-
dimensional vector space V. The series of operations 
required to align the puzzle pieces on a Rubik’s Cube 
can also be thought of as physical group of operations 
performed by the “hand.”

4.2   Representation theory of groups
When we speak of representation theory, we are 

sometimes asked, “Do you mean literature or art? Or 
is there something like that in the field of mathemat-
ics?” It is influenced by expressionism, the art move-
ment that originated in Germany in the early 20th 
century. It generally refers to the tendency to express 
emotions by reflecting them in works, as opposed to 
classical forms of representation*. Representation 
theory [11], in its most basic form, is the branch of 
mathematics that studies Vs on which elements of a 
group act as linear transformations of V (i.e., matri-
ces, once a basis is fixed). Historically, the opportu-
nity for representation theory to become an indepen-
dent research subject was the letter from Dedekind to 
Frobenius in 1886 regarding the problem of factor-
ization of the group determinants. This is the begin-
ning of the character theory of finite groups. A char-
acter is the trace of a representation (of a matrix-val-
ued function). In fact, a representation is essentially 
determined by its character. Sophus Lie also con-
ducted research aimed at developing a Galois theory 
for differential equations and founded the current 
notion of Lie algebras and Lie groups. However, 
when it comes to these representations, it is indis-
pensable to consider infinite dimensional Vs, in 
which case we need to consider the topology of the V. 

However, what decisively advanced the development 
of modern representation theory are the revolutionary 
theories in physics known as “relativity” and “quan-
tum mechanics,” as well as the dramatic progress 
made in number theory on the road to the Langlands 
program. 

From a technical standpoint only, and although they 
vary somewhat depending on the algebraic system, 
representation theory can be summarized and broadly 
divided into the following three goals:

•  Construction and classification of irreducible 
representations (creating a complete list with no 
omissions or duplicates). Irreducible representa-
tions play a fundamental role, analog to the 
prime numbers in number theory or elementary 
particles in particle physics. 

•  Decomposing a given representation into a 
“sum” of irreducible representations (division or 
reduction of complexity).

•  Study of various characteristics and/or geometric 
realizations of equivalence classes of irreducible 
representations. The various elements of the 
equivalence classes can be constructed, for 
example, using interesting geometric objects that 
are useful in applications.

Some people may wonder why groups such as 
matrix groups, which already seem simple, must be 
expressed as difficult linear transformations on infi-
nite dimensional spaces. However, the opposite is 
true. Even if something seems very complicated, if 
one unravels it correctly (decomposition), one will 
find that each part is simple (the action of an “easy” 
or “simple” group), thus one will be able to reach a 
true understanding of the object. These studies make 
full use of differential equations, functional analysis, 
the theory of special functions, combinatorics [12], 
and category theory, which has been well suited since 
Galois.

4.3   Automorphic forms
The Langlands program is often discussed purely in 

algebraic terms today, but the idea originated in Sel-
berg’s theory of analytic continuation of non-holo-
morphic Eisenstein series and Harish-Chandra’s 
research on the representation theory of reductive Lie 
groups. In fact, representation theory is a strong 
bridge for solving questions in number theory that are 
formulated purely algebraically by replacing them 
with analytical notions such as Fourier transforms 

* In Japanese, the word for both representation and expression is 
“hyogen (表現),” which is where the confusion comes from.
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and q-series (via automorphic forms [13]). The natu-
ral actions of continuous and discrete groups are 
behind it, and the description of invariance with 
respect to these actions often clarifies the problems. 
For example, after Fermat’s Last Theorem, the Sato–
Tate conjecture, which was considered to be many 
times more difficult, was (partially, i.e., a certain 
important class) solved by Richard Taylor and others 
in 2011. The Ramanujan conjecture, which led num-
ber theory in the 20th century, was that the absolute 
value distribution of the zeros of the L-function of an 
elliptic curve satisfies an analog of the Riemann 
hypothesis, but it was further formulated by Mikio 
Sato in 1963 that the argument (angle) distribution of 
the zeros follows a sin2-distribution. The difficulty 
lies in the fact that a problem that was solved with a 
single L-function in the Fermat conjecture must now 
be solved for an L-function associated with a repre-
sentation determined by a symmetric product of n 
numbers (n = 1,2,3...). This solution is groundbreak-
ing, but many more important issues remain unsolved. 
The challenge to the Sato–Tate conjecture is at the 
heart of the Langlands conjecture, and the solution 
awaits progress in non-holomorphic automorphic 
forms, which are deeply related to representation 
theory from the spectral viewpoint of invariant dif-
ferential operators. The two articles in this issue on 
automorphic forms/representations [8] and represen-
tation theory [7] focus on research that goes to the 
core of this problem. The relationship between repre-
sentation theory and quantum mechanics is deep and 
extends to number theory (e.g., [9]). It is also deeply 
connected to problems in invariant theory, combina-
torics, special function’s theory, probability theory, 
and statistics (e.g., [6]). Some of these issues are 
introduced in the articles in this issue.
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1.   Introduction

A system in which points move according to a cer-
tain rule over time is called a dynamical system. 
Given a polynomial or a rational map f, we consider 
the orbit of each point under iterated composition, 
that is,

 z  f(z)  f(f(z)) = f 2(z)   f (f (f(z))) = f 3(z)  ….

Regarding this sequence as a discrete time series, we 
obtain a dynamical system. The questions of when 
this sequence diverges to infinity or converges to a 
certain value are fundamental yet challenging. Arith-
metic dynamics studies arithmetic phenomena in 
such dynamical systems and was established around 
2000 by Silverman. Depending on whether the focus 
is more on number theory or dynamical systems, the 
nature of the research varies. This article introduces 
arithmetic dynamics from a number theoretic per-
spective, particularly problems related to the determi-
nation of rational points on curves. Problems from 
the dynamical-systems perspective are introduced in 
another article [1] in this issue.

One major goal in arithmetic dynamics is to com-
plete the dictionary of analogies between the theory 
of elliptic curves or their higher-dimensional analogs, 
Abelian varieties in number theory, and their dynam-
ical system counterparts. Through the dictionary, one 

often obtains new insights into arithmetic geometry.

2.   Morton–Silverman conjecture

A torsion point on an elliptic curve is a point that 
becomes the identity element O under repeated addi-
tion. This is equivalent to a point where the orbit 
under the iterated composition of the doubling map is 
a finite set. When an elliptic curve is defined over 
rational numbers, Mazur proved that there are at most 
16 such rational points (more precisely, he complete-
ly determined the possible group structures) [2].

What about, for example, the iteration of the map z2 
on the complex plane? The points, the orbits under z2 
of which are finite in the complex domain, are the 
roots of unity and 0. Among these, the rational points 
(rational preperiodic points) are only 0, 1, and –1. 
What about the map z2 –  3

4 ? The rational preperiodic 
points in this case are only 1

2 , – 1
2 , 3

2 , and – 3
2 . Is the 

finiteness of rational preperiodic points special to 
these maps? In fact, it can be proven that the number 
of rational preperiodic points is finite for any polyno-
mial with rational coefficients of degree d ≥ 2. How-
ever, is the number of such points as small as 3 or 4? 
When restricted to rational periodic points, i.e., ratio-
nal points with periodic orbits, what periods are pos-
sible? The following conjecture addresses this.

Arithmetic Problems in Dynamical 
Systems
Kaoru Sano
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Morton–Silverman uniform boundedness conjecture 
(special case): For any integer d ≥ 2, there exists a 
constant Nd such that the number of rational preperi-
odic points of any rational function f of degree d is at 
most Nd.

This conjecture remains largely open even for qua-
dratic polynomials z2 + c (with c a given rational 
number). It is relatively easy to prove that there are 
infinitely many cs for which there are rational peri-
odic points z of periods 1, 2, and 3. However, it has 
been shown that there are no cs for which z2 + c 
allows rational periodic points of periods 4, 5, or 6 
(with the 6-period case requiring the assumption of 
the Birch–Swinnerton-Dyer (BSD) conjecture) 
[3–5]. Assuming a generalized abc conjecture, it has 
been proven that z2 + c does not have rational peri-
odic points of period 4 or higher. One might think of 
solving the equation fcn(z) = z to find rational periodic 
points of period n. For n = 4, for example, one would 
consider the solutions of the polynomial obtained by 
dividing fc4(z) – z by fc2(z) – z. The situation is similar 
for general period n. The resulting polynomials are 
called the n-th dynatomic polynomials. The figure 
Xndyn defined by these polynomials is a curve, and the 
problem reduces to determining the rational points on 
this curve. These problems are familiar to those 
aware of Fermat’s Last Theorem. In fact, for n = 4, 5, 
6, the results are proven using theories developed for 
determining rational points on specific curves, fully 
using techniques built up until the solution of Fer-
mat’s Last Theorem. However, it should be noted that 
the key theory that led to the final proof of Fermat’s 
Last Theorem is not about determining rational points 
on specific curves. By using a non-trivial rational 
solution of Fermat’s Last Theorem, a too-nice elliptic 
curve called the Frey curve is defined. According to 
the Taniyama–Shimura conjecture, which is now a 
theorem, any elliptic curve corresponds to a modular 
form [6, 7]. However, due to the properties of the 
original elliptic curve, the corresponding modular 
form has such too-nice properties that it can be shown 
not to exist, leading to a contradiction. Therefore, 
Fermat’s Last Theorem’s non-trivial solution does 
not exist. While it is natural to explore if this surpris-
ing method can be applied to the Morton–Silverman 
conjecture, no method, such as for defining a Frey 
curve, has been developed.

As mentioned above, Mazur proved that the num-
ber of rational torsion points on an elliptic curve is at 
most 16, but what about the higher-dimensional case, 
such as Abelian varieties? This problem remains open 

even for the two-dimensional case. Fakhruddin has 
shown that this conjecture follows from the Morton–
Silverman conjecture, indicating a significance 
beyond merely following analogies [8].

3.   Dynamical cancellation

Consider the following scenario related to the Mor-
ton–Silverman conjecture. Let f be a polynomial of 
degree d. Suppose f  has a rational preperiodic point 
x. Such a point will eventually enter a periodic orbit 
after certain iterations of f. Suppose it enters a peri-
odic orbit of period 4 at time 3, as illustrated in the 
orbit diagram (Fig. 1). In this case, let y = f 4(x). Then, 
x and y collide at time 3. That is, f 2(x) ≠ f 2(y) and 
f 3(x) = f 3(y). For a fixed rational map f, how many 
rational pairs (x, y) satisfy f n–1(x) ≠ f n–1(y) and f n(x) 
= f n(y)? This question is called dynamical cancella-
tion. To answer this, one could examine the existence 

of solutions (x, y) to the equation f n(x) – f n(y)
f n–1(x) – f n–1(y)  = 0 for 

each integer n (≥ 1). This is again reduced to the prob-
lem of determining rational points on curves, which 
is difficult. However, in 2023, Bell, Matsuzawa, and 
Satriano proved that for any rational function f of 
degree 2 or higher, there are no rational pairs (x, y) 
satisfying f n–1(x) ≠ f n–1(y) and f n(x) = f n(y) for suf-
ficiently large n [9]. In joint work with Matsuzawa, I 
have generalized this result to two dimensions [10], 
and Zhong obtained results for higher dimensions 
[11]. Although these results are about determining 
rational points on curves, their proofs use algebraic 
geometry and p-adic analysis.

In a different direction from this generalization to 
higher dimensions, another interesting question is 
whether the bound on n in dynamical cancellation is 
independent of f when the degree d is fixed. If this 
uniform version of dynamical cancellation holds, by 
considering examples such as those mentioned at the 
beginning of this section, we can determine the 
maximum length of the tail of preperiodic orbits, 

Fig. 1.   Preperiodic orbit.
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contributing to the Morton–Silverman conjecture.

4.   Preimages of 0

Returning to the topic of elliptic curves, let us con-
sider the problem of finding torsion points that 
become O under repeated multiplication by a prime 
p. How many such torsion points exist? If it can be 
shown that there are no such points other than O for 
all but finitely many p, it would yield a result compa-
rable to Mazur’s theorem. Similar considerations are 
applied to Abelian varieties. In the context of dynam-
ical systems, consider the analogous problem for the 
map fc(z) = z2 + c. How many pairs of rational num-
bers (c, z) and positive integers n satisfy fcn(z) = 0? 
This is the problem of determining rational points on 
the curve Xn

pre defined by fcn(z) = 0. Faber, Hutz, and 
Stoll have shown, assuming the BSD conjecture, that 
for n ≥ 4, there are no rational points (c, z) with c ≠ 
–1, 0. The map sending a point (z, c) on Xn

pre to (fc(z), 
c) on Xn–1

pre deeply connects these curves, resembling 
the modular curves describing torsion points on ellip-
tic curves.

5.   Arboreal Galois representations

Shifting direction from the problem of determining 
rational points on curves, let us consider problems 
related to extensions of number fields. As in Kum-
mer’s approach to Fermat’s Last Theorem, the 
uniqueness of prime factorization becomes a crucial 
issue when extending the world of numbers (i.e., con-
sidering number fields). The extent to which unique 
factorization fails is described by the quantity called 
the class number. Computing the class number of a 
given number field remains a central, challenge in 
modern number theory. For example, Iwasawa’s the-
ory studying the field extension called p-extension is 
one of the great theories in this direction.

In arithmetic dynamics, a similar problem to Iwa-
sawa’s theory arises. Fix an f and rational number x, 
and consider the tree of points formed by the preim-
ages under iterated composition of f (Fig. 2). The 
problem of determining the number of rational points 
in this tree was discussed in section 4, where it was 
noted that rational points typically disappear early. 
The field obtained by adding these points to the field 
of rational numbers is called an iterated Galois exten-
sion. How does this extension change as the number 
of iterations increases? Consider the preimages of 1 
under f (z) = zp. This corresponds to considering all 
p-th roots of unity. Adding these to the field of ratio-

nal numbers yields a cyclotomic  p-extension. When 
this extension is stopped at the n-th stage, a number 
field is obtained. In Iwasawa’s theory, the Iwasawa 
class number formula describes the asymptotic 
behavior of the class number, which is a remarkable 
theorem. What about the iterated Galois extensions 
arising from the preimages of 0 under z2 + 1? Is there 
an asymptotic formula for the class number like Iwa-
sawa’s class number formula? In Iwasawa’s theory, 
class field theory is used as a fundamental tool, and 
the commutativity of the Galois group (describing the 
symmetries of number fields) is an essential assump-
tion. In most cases, however, the Galois group of 
iterated Galois extensions is non-Abelian and is 
expected to realize a large part of the symmetry of the 
tree (the automorphism group). In p-extensions, they 
realize very little of the symmetry of the tree, which 
is a rare situation. When the Galois group realizes 
very little of the tree’s symmetry (i.e., when it has an 
infinite index in the automorphism group of the tree), 
it is considered that f has special dynamical proper-
ties. For example, if the dynamical system has an 
automorphism, all critical points are pre-periodic 
points, or the orbits of multiple critical points inter-
sect, the Galois group has an infinite index. However, 
it is an open question whether these situations exhaust 
all possibilities for an infinite index. Solving these 
problems would contribute to the non-Abelian gener-
alization of Iwasawa’s theory.

6.   Conclusion

I have introduced several number-theoretic prob-
lems arising from the iteration of polynomials and 
rational functions. These problems not only follow 
the analogy with the theory of elliptic curves and 
Iwasawa’s theory but also extend techniques from 

Fig. 2.   Preimage tree.

f−4(x)

f−3(x)

f−2(x)

f−1(x)

x



Feature Articles

29NTT Technical Review Vol. 22 No. 9 Sept. 2024

complex dynamics and reveal new arithmetic phe-
nomena. Arithmetic dynamics is still a young field 
but developing rapidly, involving researchers from 
various fields such as algebraic geometry, complex 
dynamics, and arithmetic geometry. I look forward to 
future research developments.
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1.   Introduction

The theory of complex dynamics is a field in math-
ematics that studies asymptotic behaviors of dynami-
cal systems defined from recurrence formulae with 
complex coefficients. For instance, the formula xn+1 = 
xn

2 + c, parametrized by a complex number c, repre-
sents the dynamics over the complex plane. That is, if 
we set an initial state x0, which is a complex number, 
the states x1, x2, x3, … are determined sequentially 
with the formula. The question is what happens to xn 
when we consider n → ∞. Despite the simple form of 
the formula, the answer is deeply related to rich and 
intriguing structures such as the Mandelbrot set 
(Fig. 1).

Research in this field is fascinating because of its 
crucial connections with other areas, such as real 
dynamics, arithmetic dynamics, non-archimedean 
dynamics, algebraic geometry, and Arakelov geome-
try. These areas have their methods and purposes but 
affect each other, i.e., if one field has significant prog-
ress, it stimulates and is applied to different fields. In 
this article, we explore this connection from the 
example of a relation between complex dynamics and 
non-archimedean dynamics, which is the author’s 

field of study, after we look at what precisely com-
plex dynamics involves.

2.   Complex dynamical systems

Let us consider the example xn+1 = xn
2 + c that 

appeared in the previous section. The simplest case is 
when c = 0, that is, xn+1 = xn

2. Since the recurrence 
formula has a solution xn = (x0)2n

, we can see the 
asymptotic behavior depending on the absolute value 
of the initial state x0 as follows:

(a) Case |x0| < 1: {xn} converges to 0;
(b) Case |x0| > 1: {xn} diverges to ∞;
(c) Case |x0| = 1: |xn| stays 1 for any n.

In cases (a) and (c), the asymptotic behaviors are 
stable under small fluctuation of x0 while it is not in 
case (b). That is, in case (a) (resp. (c)), if we give a 
slight change to x0 so that |x0| < 1 (resp. |x0| > 1) still 
holds, the asymptotic behavior, converging to 0 (resp. 
diverging to ∞), does not change. In case (b), how-
ever, small fluctuation of an initial state affects its 
asymptotic behavior; if the absolute value |x0| 
becomes smaller (resp. greater) than 1, case (b) 
becomes (a) (resp. (c)). The set of unstable points 
under slight fluctuation is called the Julia set. In this 
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specific case of the dynamical system defined by xn+1 
= xn

2, the Julia set is the set of point x0 with |x0| = 1, 
namely the unit circle in the complex plane ℂ. It has 
a simple shape, a circle as in Fig. 2, but this is special. 
For instance, Fig. 3 shows the Julia set of the dynam-

ics xn+1 = xn
2 + c with c = –1. This set is called “Basil-

ica” because of its shape. Fig. 4 is the Julia set “Rab-
bit” of the dynamics xn+1 = xn

2 + c with c = 0.123 + 
0.745i, and Fig. 5 is “Airplane” that appears when c 
= –1.75488. We see how myriad shapes of the Julia 

Fig. 1.   The Mandelbrot set.

Fig. 2.   The Julia set at c = 0.
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set appear by simply taking various c’s in the formula 
xn+1 = xn

2 + c.
The Mandelbrot set controls the shape of Julia sets 

attached to the dynamics xn+1 = xn
2 + c. Let us take a 

look at it more closely. It is a subset of the parameter 

space of xn+1 = xn
2 + c, i.e., the space of c, which has a 

complicated shape with many areas divided by it. The 
meaning of this set is as follows. Each time you take 
point c from the complex plane, where the Mandel-
brot set lives, it corresponds to a recurrence formula 

Fig. 3.   The Julia set at c = –1, “Basilica.”

Fig. 4.   The Julia set at c = –0.123 + 0.745i, “Rabbit.”



Feature Articles

33NTT Technical Review Vol. 22 No. 9 Sept. 2024

xn+1 = xn
2 + c, the dynamics defined from it, and the 

Julia set of it. If one moves c continuously, it is rea-
sonable to expect that the Julia set moves continu-
ously along the motion of c. Intriguingly, it was found 
that this was different and the true description was as 
follows. The motion is continuous only if one takes 
the parameters inside an area divided by the Mandel-
brot set. In this case, the Julia sets’ shapes look simi-
lar. However, once one crosses the border, it is no 
longer the case. For example, c = 0 lies inside the area 
that looks like a cardioid (the widest area), c = –1 
inside the area to the left of the cardioid that looks 
like a disk, and c = 0.123 + 0.745i inside the area 
above the cardioid that looks like a disk, which means 
they lie in areas different to each other. The Julia sets 
keep their shape inside each area. However, the shape 
changes completely when the area moves from one 
area to another. The motion of the Julia set is unstable 
under small fluctuations on the boundary of the Man-
delbrot set. Such a phenomenon, the drastic change in 
shapes of the Julia sets with slight fluctuation of 
parameters, is called bifurcation, and a parameter at 
which the bifurcation occurs is called a bifurcation 
point. The Mandelbrot set is the set of bifurcation 
points of c in the recurrence formula xn+1 = xn

2 + c. The 
Julia set controls the stability of asymptotic behaviors 
for fixed c while the set of bifurcation points (or the 
Mandelbrot set in this specific example) controls the 
stability of motion of the Julia sets when we fluctuate 
the dynamical systems along parameters.

The Julia sets and Mandelbrot set have quite rich 
and interesting properties. As shown in Figs. 2–5, the 
various Julia sets look complicated but have rules 
inside the structure, called self-similarity. The Man-
delbrot set has a similar property. If one zooms in on 
part of it, another Mandelbrot-look-alike set appears 
inside the Mandelbrot set, as in Fig. 6. It is fascinat-

ing, but at the same time, quite difficult. A case in 
point is the property of the so-called local connectiv-
ity of the Mandelbrot set, which is still open.

We can define similar stabilities, i.e., the notion of 
Julia sets and the sets of bifurcation points for differ-
ent recurrence formulae. For instance, when we con-
sider a polynomial f of more than two degrees in the 
formula xn+1 = f(xn), its parameter space can be 
higher dimensional. We can also consider dynamical 
systems with higher dimensional phase spaces. An 
Hénon map defines a crucial example of such dynam-
ics that has been studied actively. It is represented by 
the recurrence formula (xn+1, yn+1) = (xn

2 – axn + byn, 

Fig. 5.   The Julia set at c = –1.75488, “Airplane.”

Fig. 6.    The Mandelbrot set zoomed at [–0.4, 0.1] × [0.5, 
1.0].
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xn), where a and b are complex numbers with b ≠ 0. 
Hénon devised it as real dynamics, i.e., xn, yn, a, b are 
all real numbers, to initially study the chaos phenom-
ena generated from a differential equation called the 
Lorentz equation that simulates climate. Mathemati-
cians later observed interesting phenomena unique to 
complex versions of the dynamics of the Hénon 
maps, and even several applications to real Hénon 
maps. This is a part of an interaction between real and 
complex dynamics.

3.   Non-archimedean numbers and 
non-archimedean dynamics

Just as complex dynamics is a theory of dynamical 
systems over complex numbers, non-archimedean 
dynamics treats dynamical systems over non-archi-
medean numbers. Non-archimedean numbers is a 
name for several types of numbers with a common 
property called non-archimedes. The most typical 
example of a non-archimedean number is the p-adic 
number, which we take as an example to see what 
non-archimedes is. The “p” inside the p-adic number 
is a prime. There are 2-, 3-, 5-adic numbers, …, and 
they are lateral to complex and real numbers. Another 
typical example is called the Laurent series, which we 
discuss later. Let us look at the properties of non-
archimedean numbers from an instance of 2-adic 
numbers.

Consider a metric on the set of integers, which is 
different from the usual one and called 2-adic dis-
tance, given by the following rule. The more times 
the difference of two numbers is divisible by 2, the 
closer they are to each other. We observe this rule by 
an example. In a usual metric, 4 is closer to 2 and 
further to 8. However, the difference between 2 and 
4 is 2, which is divisible by 2 once, while that 
between 4 and 8 is 4, which is divisible by 2 twice. 
We conclude that 8 is closer to 4 than 2 with respect 
to the 2-adic metric.

The 2-adic distance is deeply related to the 2-adic 
expansion, i.e., the binary representation of numbers. 
The 2-adic expansions of the above three numbers 
are

2 = (10)2;
4 = (100)2;
8 = (1000)2.

When we compare their distance, we need to read the 
2-adic expansions from right to left. We observe that 
the first two digits coincide in the 2-adic expansions 
of 4 and 8, while only one digit is in those of 2 and 4. 
Comparing the above rule of the 2-adic distance with 

the definition of the 2-adic expansion, we see an 
alternative, but the equivalent rule of the 2-adic dis-
tance is the more digits of the 2-adic expansions of 
two numbers coincide, the closer they are to each 
other when we read the expansion from right to left. 
More precisely, it is conventional that the distance of 
two numbers, the 2-adic expansion of which shares 
the same first n digits, is defined as 2–n. We write the 
2-adic distance of two positive integers a and b as 
d2(a, b).

Let us now extend the metric. We consider a 2-adic 
expansion (⋯111)2 that continues infinitely to the 
left. By definition, it is the limit of the sequence (1)2, 
(11)2, (111)2, …, i.e., 1, 3, 7, …. They look to 
diverge to infinity but converge to –1 in the 2-adic 
distance. By adding 1 to this sequence, we obtain a 
sequence (10)2, (100)2, (1000)2, …, which con-
verges to 0. More specifically, the 2-adic distance 
between (10)2 = 2 and 0 is 1/2, that between (100)2 
= 4 and 0 is 1/4, and that between (1000)2 = 8 and 0 
is 1/8, …. We see that the distance converges to 0, 
i.e., (⋯111)2 + 1 = 0, which means (⋯111)2 = –1. 
The 2-adic distance can naturally extend to numbers 
written as a 2-adic expansion that continues infinitely 
to the left, such as (⋯111)2 = –1 above.

We can consider decimals as we do in real numbers. 
In the 2-adic expansion, there are halves place, quar-
ters place, 1/8 place, etc. It is natural, by the expo-
nential law, to regard these as being divisible “1 
times,” “–2 times,” and “–3 times,” respectively, by 
2. Namely, we have d2(1/2, 0) = 2, d2(1/4, 0) = 4, 
d2(1/8, 0) = 8, …. and clearly this sequence diverges 
to ∞. Recall that in a standard distance, a sequence, 
where the number of digits to the left of the decimal 
point increases, diverges, while a sequence, where 
the number of digits after the decimal point increases, 
does not. The opposite is true for the 2-adic distance. 

Now let us define the 2-adic numbers. The 2-adic 
numbers are the 2-adic expansions with an infinite 
digit to the left of the decimal point and finite digit to 
the right. Note that a number with infinite digits to the 
left of the decimal point can be obtained as the limit 
of the finite-digit numbers obtained by truncating the 
n-th digit. The sequence of these truncated numbers 
converges by the above argument. We extend the 
2-adic distance considered above to the set of 2-adic 
numbers, and it is possible to assess convergence and 
divergence. With a few arguments, we can show that 
the set of 2-adic numbers contains all the rational 
numbers, including the positive integers we consid-
ered first and the negative integers such as –1 = 
(⋯111)2. In this sense, we can say that the set of 
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2-adic numbers is similar to that of real numbers: 
they both have distances and limits (so-called “com-
pleteness”) and include all the rational numbers. 
However, we can also say they differ from other per-
spectives, most of which come from the property of 
the 2-adic distance, i.e., non-archimedes. The 2-adic 
numbers are non-archimedean, which means the 
strong triangle inequality holds. For any 2-adic num-
bers a, b, and c, we have d2(a + b, c) ≤ max(d2(a, c), 
d2(b, c)). Because 2 is divisible by 2 once and 4 
twice, 2 + 4 is divisible once, which is the minimum 
number of times that they are divisible by 2. Since 
this “1” in “once” appears in the 2-adic distance of 2 
and 4 d2(2, 4) = 2–1, with –1 multiplied, the “mini-
mum” appears as maximum in the inequality of dis-
tance. By putting any positive real numbers in a, b, 
and c, this inequality does not hold for the usual dis-
tance of real and complex numbers (remark: the tri-
angle inequality d(a + b, c) ≤ d(a, c) + d(b, c), the 
weaker form of the strong triangle inequality holds 
instead). That is, the strong triangle inequality is 
unique to 2-adic numbers. Let us next discuss the dif-
ference the strong triangle inequality makes between 
real and 2-adic numbers.

Let us look at the difference in “shapes” of the sets 
of real and 2-adic numbers. Real numbers can be seen 
as points on a number line, which means the shape of 
the real numbers is a line. The question is, what is the 
shape of 2-adic numbers? We derive the answer from 
the 2-adic expansion. Consider the 2-adic numbers 
without decimals and describe their 2-adic expansion 
as a binary tree. This tree starts from one root, with 
two edges extending, each corresponding to the first 
digit (counted from the right) 0 and 1. In the same 
manner, from each node at the end of the edges, two 

more branches extend, corresponding to the second 
digit of the 2-adic expansion. Since 2-adic numbers 
have 2-adic expansion with an infinite digit to the 
left, we repeat this procedure infinite times. Note that 
if the number has only a finite digit, we take 0 infinite 
times. We obtain a rooted tree (Figs. 7 and 8) with 
infinite depth from this operation. The 2-adic num-
bers without decimals can then be seen as the set of 
“endpoints” that is not the first root of this tree. We 
also acquire the tree for all 2-adic numbers, possibly 
with decimals, by adding another tree above this tree. 
We create another rooted tree containing the original 
one by adding another root corresponding to the 
halves place, from which two edges extend, and each 
node at the end of the edge corresponds to one place 
from each of which the original tree appears. We con-
tinue this infinite times to obtain the tree of whole 
2-adic numbers, which no longer has a root. The 
shape of 2-adic numbers is then the set of endpoints 
of this tree. Not only does each endpoint correspond 
to a 2-adic number but the tree structure also reflects 
the distance. As mentioned above, with respect to the 
2-adic distance, the more digits of two 2-adic num-
bers coincide, the closer they are. By tree representa-
tion, it is equivalent to saying that the deeper they 
share edges in the tree, the closer they are.

We also see a difference between complex (or real) 
and 2-adic numbers if we consider the dynamics over 

Fig. 7.   Binary tree representation of 2-adic expansion.

Fig. 8.    Binary tree representation of 2-adic expansion with 
endpoints.
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them. We have already observed the dynamical  
system xn+1 = xn

2 + c over the complex numbers 
above. Now, let us look at the same dynamical sys-
tem, with both phase and parameter spaces 2-adic; x0 
and c are both 2-adic numbers. Because of the limited 
space, we only consider the formula with c = 0, i.e., 
xn+1 = xn

2. We see that even such a simple dynamical 
system is good enough to observe the difference. It 
has a solution xn = x0

2n
, and we can see the asymptotic 

behavior depending on the absolute value of the ini-
tial state |x0| (that is, defined by d2(x0, 0)), (a)–(c) in 
Section 1, which is the same as the complex case. 
However, the strong triangle inequality makes the 
behavior completely different; case (b) is no longer 
unstable under slight fluctuation of x0. Let us discuss 
this in more detail. We take any number ε such that |ε| 
< 1 and consider x0 + ε. In the complex case, we saw 
that the asymptotic behavior was unstable under 
small fluctuation; for instance, if we take x0 = 1, then 
any ε > 0 makes |x0 + ε| > 1, which is case (a). In the 
2-adic case, however, the conditions |x0| = 1 and |ε| 
< 1 with the strong triangle inequality indicate that 
d2(x0 + ε, 0) ≤ max(d2(x0, 0), d2(ε, 0)), i.e., |x0 + ε| ≤ 
max(|x0|, |ε|) = 1. Case (a) can never occur with 
small fluctuation. The condition |ε| < |x0| also indi-
cates |x0 + ε| = |x0|, which is deduced simply by the 
strong triangle inequality, though we do not present 
its proof. This means that case (c) cannot occur, 
either. As a consequence, small fluctuation in the 
sense of the 2-adic distance does not break the condi-
tion in case (b). The dynamics xn+1 = xn

2 over the 
2-adic numbers does not have a Julia set, which is 
known to be impossible in complex dynamics. We 
can see how much the non-archimedean property 
affects the behavior of dynamical systems.

We go back to the first paragraph of this section 
from the specific number, the 2-adic one. By replac-
ing 2 in the 2-adic distance with other prime num-
bers, such as 3, 5, and 7, we obtain 3-, 5-, and 7-adic 
numbers, with the 3-, 5-, and 7-adic distances, 
respectively. As mentioned above, the p-adic number 
is a collective term for numbers defined for each 
prime number. Each set of p-adic numbers has the 
p-adic distance for which the strong triangle inequal-
ity holds as 2-adic distance. Note that they are differ-
ent from each other; that is, the sets of 2-adic and 
3-adic numbers have several common properties, but 
not the same sets. The p-adic numbers exist as much 
as the number of the prime numbers, which are infi-
nitely many. As mentioned above, the strong triangle 
inequality affects the nature of the numbers such as 
the theory of dynamical systems. Non-archimedean 

numbers are numbers with a distance that satisfies the 
strong triangle inequality, which clearly includes 
p-adic numbers. Even though the examples of the dif-
ference between real numbers and non-archimedean 
numbers (2-adic numbers there) mentioned above 
may seem peculiar and unintuitive, the p-adic num-
bers are one of the most fundamental tools in modern 
number theory, the area of mathematics studying the 
properties of integers and rational numbers. For 
instance, p-adic numbers are necessary to prove Fer-
mat’s Last Theorem. In the next section, we examine 
another application of non-archimedean numbers that 
are not p-adic.

4.   Non-archimedean dynamics and 
hybrid dynamics

The last topic in this article is devoted to the theory 
of hybrid dynamics—the application of non-archime-
dean dynamics to complex dynamics. We take an 
example as a recurrence formula xn+1 = txn

2 parame-
trized by a complex number t. This recurrence for-
mula is unique compared with the above example 
because we have xn = 0 for any n when t = 0. We 
observe that a drastic change, called degeneration, 
occurs at t = 0, which is not the above-mentioned 
bifurcation. Bifurcation is a change in asymptotic 
behavior, not a form of formulae, as in degeneration. 
Degeneration is related to significant problems asso-
ciated with the so-called compactification of the 
moduli spaces. Hybrid dynamics is a strong tool for 
studying degeneration by means of non-archimedean 
dynamics. As complex (resp. non-archimedean) 
dynamics involves the study of dynamical systems 
over complex (resp. non-archimedean) spaces, 
hybrid dynamics involves the study of dynamical 
systems over “hybrid” spaces. The hybrid space was 
introduced by Boucksom et al. [1] to investigate 
degeneration phenomena in algebraic geometry. 
Favre later imported it to study degeneration phe-
nomena in complex dynamics [2].

The non-archimedean number considered in this 
theory is not a p-adic one but one that is called a com-
plex Lauren series. A (one-dimensional) complex 

Laurent series is a series  
∞
∑

n=m
cntn, an infinite sum of 

cntn with variable t and complex coefficients cn, per-
mitting a finite number of negative powers. By com-
plex analysis, every meromorphic function defined 
around the origin can be written as an infinite sum of 
such series, i.e., it is an example of the complex Lau-
rent series. Because we do not require any condition 
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on convergence, the Laurent series includes more 
than just meromorphic functions around the origin. 
Recalling that a 2-adic number has a binary represen-
tation, an infinite sum of 2n permitting a finite num-
ber of negative powers, we can see a similarity 
between 2-adic numbers and complex Laurent series. 
It is possible to introduce a distance to the set of com-
plex Laurent series similar to the 2-adic one. If we 
define that the distance between two complex Lau-

rent series  
∞
∑

n=m
cntn and  

∞
∑

n=m
c'ntn is e–n0 if cn = c'n holds for 

any n ≤ n0, then the set of the complex Lauren series 
is a kind of non-archimedean numbers by this dis-
tance. Looking at the above example xn+1 = txn

2 again, 
the coefficient t = 0 ⋅ 1 + 1 ⋅ t + 0 ⋅ t2 + ⋯ is a complex 
Lauren series. With t regarded as a non-archimedean 
number, we may consider the recurrence formula xn+1 
= txn

2 as a dynamical system over the set of Lauren 
series, i.e., non-archimedean dynamics. In other 
words, we may consider the dynamics of formulas 
themselves. In general terms, hybrid dynamics 
describes the relation between the original complex 
dynamics xn+1 = txn

2 and induced non-archimedean 
dynamics.

I drew a rough diagram of the hybrid space in 
Fig. 9. It is a family of spaces parametrized by a com-
plex number t. Any non-zero t gives just a complex 
plane, while t = 0 gives the space of the complex 

Laurent series. The space of the complex Laurent 
series is the so-called Berkovich space, the details of 
which are too technical to explain in this short article. 
Roughly speaking, by considering the Berkovich 
space, we take into account the whole tree in Fig. 8, 
not just the set of endpoints where the actual complex 
Laurent series lives. It is sufficient to have the image 
in which as the endpoints of the tree structure move 
according to a recurrence relation, the internal points 
of the tree also move accordingly. This rough dia-
gram of the hybrid space enables us to regard spaces 
of non-archimedean numbers as the degenerating 
“limit” of a family of complex planes, or if it converts 
into the language of dynamics, hybrid dynamics 
enables us to regard non-archimedean dynamics as 
the degenerating “limit” of complex dynamics.

There are several reasons we need such a compli-
cated space. One reason comes from the natural way 
mathematicians look at mathematical phenomena. As 
mentioned above, the formula xn+1 = txn

2 degenerates 
to a constant when t = 0. Mathematicians consider 
this phenomenon a wrong consequence by looking at 
it in an inadequate space. The next question we need 
to consider is what the “correct” space is to glean a 
proper degeneration feature. The hybrid space is one 
possible answer, where the degeneration limit still 
defines a non-trivial (or non-constant in this case) 
dynamics.

Favre showed that, for a family of complex dynam-
ical systems whose recurrence formulae are one-
variable with one-dimensional parameter t and pos-
sibly degenerating at t = 0, the family of Julia sets 
determined for each non-zero t “converges” to the 
Julia sets of the induced non-archimedean dynamics, 
which is a dynamical system over the space of com-
plex Laurent series when we consider everything 
over the hybrid space [2]. The author presented a 
similar result for the dynamics of Hénon maps [3], 
and it is natural to expect to observe similar results in 
various degenerating complex dynamical systems. 
Even though non-archimedean numbers may seem 
odd at first glance, they are essential not only in num-
ber theory, as mentioned above, but also in complex 
dynamics, where non-archimedean dynamics uni-
formly describe the degeneration of complex dynam-
ical systems.

5.   Conclusion

The term “complex dynamics” does not indicate a 
study method but an area to be studied. Numerous 
mathematicians study the mysteries in complex 

Fig. 9.   A hybrid space.
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dynamical systems with various tools from miscella-
neous viewpoints. I gave an example of non-archime-
dean dynamics. However, mathematicians are con-
stantly presenting more results from multiple 
approaches every day. I would be delighted if I could 
share even a glimpse of its importance and allure.
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1.   What is motive? 

In mathematics, it is often the case that two differ-
ent phenomena/objects show a surprising relation-
ship. Behind such a surprising connection, mathema-
ticians sometimes find a new mathematical concept. 
Motive is a very good example of this—it is a univer-
sal mathematical object that should exist behind 
many cohomology theories appearing in arithmetic 
geometry. 

2.   Arithmetic geometry

Using the framework of arithmetic geometry, a 
large part of the study of number theory is replaced 
with research on geometric objects called ‘algebraic 
varieties.’ A simple example of algebraic varieties is 
the graph of an (system of) algebraic equation(s). For 
example, the graph of the equation y = x2, a parabola, 
is an algebraic variety. When an equation contains 
only a small number of variables, its graph is ‘visible’ 
to our eyes. However, if an equation contains many 
variables, its graph is often of higher dimension, 
making it ‘invisible’ to us. Even if the graph has a 
lower dimension, its shape could be too complicated 
to study just by directly seeing it. 

3.   Invariants—How to quantify shapes

When it is difficult to investigate a shape by seeing 
it, the notion of ‘invariant’ helps us. An invariant 
transforms a property of shapes into a certain quan-
tity. A typical and useful example is the genus of 
surfaces (Fig. 1), i.e., the number of holes. Of course, 
the genus captures just one aspect of surfaces, but it 
has the following important property:

 Theorem: The genus does not change after 
any continuous deformation.

A continuous deformation means regarding a sur-
face as a ‘soft rubber’ and transforming it without 
tearing. As an application of this theorem, let us do 
the following exercise: can we continuously deform 
the surface in Fig. 1(a) into the one in Fig. 1(b)? 
Apparently, the genus of Fig. 1(a) is 2, and that of Fig. 
1(b) is 3. Thanks to the theorem, any surface obtained 
by a continuous deformation of Fig. 1(a) remains 
having genus 2, not 3. This shows that Fig. 1(a) can 
never be continuously deformed to Fig. 1(b). 

This conclusion could be intuitively obvious since 
these surfaces have simple structures. However, what 
if a surface has a trillion holes? At least to me, it is 
completely non-obvious that the number of holes will 
not change after any continuous deformation of the 
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surface. The point of the above theorem is that the 
result is mathematically proven true for any extreme 
examples outside our imagination. 

4.   How to ‘see’ the invisibles

In the previous example, we could count the num-
ber of holes by directly seeing the figures. However, 
we will not be able to do this for ‘invisible’ shapes, 
which often appear in the study of mathematics. 
Therefore, let us think of another method of calculat-
ing the genus of surfaces. As the above theorem says, 
the genus is unchanged by any continuous deforma-
tion. Therefore, we can replace the surface of a donut 
with a polyhedron, as in Fig. 2. We then have the 
following surprising theorem:

 Theorem: If the genus of a polyhedron is , 
then we have #(vertices) – #(edges) + #(faces) 
= 2–2 .

Here, #(vertices) means the number of vertices on 
the polyhedron, and similarly for edges and faces. 
Also, the alternating sum #(vertices) – #(edges) + 
#(faces) is called the Euler characteristic. By direct 
counting, we can check if the theorem is true for the 
surface in Fig. 2: it has 24 vertices, 48 edges, and 24 
faces. And the genus is  = 1. Substituting them into 
the equation in the theorem, both sides have the same 
value 0. This works. If one has a pencil and piece of 
paper, it would be a fun exercise to try other examples, 
e.g., a hexahedron. In this case, the genus is  = 0.

In the above example, we could easily and directly 
count the number of holes since we could see the 
entire surface structure. If we live on the surface (like 
we live on the earth, a sphere), however, counting the 
number of holes would be much more difficult. Even 

in this situation, the above theorem ensures that we 
can ‘compute’ the genus by dividing the surface into 
a polyhedron and by counting the numbers of verti-
ces, edges, and faces (which should be possible by 
moving around on the surface without seeing it from 
the universe). 

This approach can be applied not only to surfaces 
but also to geometric objects (shapes) of higher 
dimensions. A (two-dimensional) polyhedron con-
sists of three types of ‘parts’—vertices, edges, and 
faces. These are also called cells. A shape that can be 
continuously deformed to an n-dimensional disk is 
generally called an n-cell. A vertex is a zero-dimen-
sional disk, so it is a zero-dimensional cell. Similarly, 
an edge is a one-dimensional cell, and a face is a two-
dimensional cell (the faces of a polyhedron are angu-
lar, but they are continuously deformed to a disk). A 
shape constructed by combining cells is called a cell 
complex*1 (a polyhedron is a two-dimensional cell 
complex). Just as a surface could be continuously 
deformed to a polyhedron, a large part of higher 
dimensional shapes can be deformed to cell com-
plexes. Cell complexes contain concrete information, 
such as the number of cells in each dimension and 
how two cells are connected (or non-connected) by 
another cell (e.g., we can ask whether two vertices are 
connected by an edge). Such information reveals 
important properties of ‘invisible’ shapes living in 
higher dimensions. 

Fig. 1.    The genus of surfaces: (a) surface of genus 2 and 
(b) surface of genus 3.

(a) (b)

Fig. 2.   Polyhedron of genus 1.

*1 Cell complex: If a shape (topological space) can be continuously 
deformed to a cell complex, it is called a CW complex, where the 
C stands for closure finite and the W for weak topology. Many 
topological spaces appearing in applications are CW complexes.
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5.   Cohomology

The Euler characteristic depends only on the num-
ber of cells in each dimension appearing in the poly-
hedron and does not use the information of the rela-
tionship between the cells. By using this extra infor-
mation, we can construct the cellular cohomology*2, 
which drastically upgrades the Euler characteristic of 
a surface. The Euler characteristic assigns values to 
shapes, while the cellular cohomology assigns vector 
spaces to shapes. 

Let us use the letter X to denote the shape we want 
to study, and let d be the dimension of X. Suppose 
also that X is a cell complex (by applying continuous 
deformation). Then there are (d + 1)-types of cells 
appearing on X—cells of 0, 1, 2, …, d dimensions. 
The cellular cohomology is given as d + 1 vector 
spaces*3 corresponding to the dimensions of cells, 
which are usually written as

H0(X), H1(X), H2(X), …, Hd(X).

Usually, we abbreviate the collection of these d + 1 
vector spaces as H*(X) to simplify the notation. When 
X has dimension 2 (i.e., if X is a surface), then the 
cellular cohomology of X consists of three vector 
spaces H0(X), H1(X), H2(X). Any vector space has 
dimension, and if X is a surface, then the Euler char-
acteristic of X coincides with the alternating sum of 
the dimensions of these three vector spaces. Thus, we 
can regard the cellular cohomology as a generaliza-
tion of the Euler characteristic. 

6.   Functoriality of cohomology

The cellular cohomology has much richer informa-
tion than the Euler characteristic. To see this, we 
should consider not only the shapes but also the con-
tinuous maps between them. By the cellular cohomol-

ogy, a linear map H*(Y) → H*(X) is assigned to a 
continuous map*4 X → Y. This property is called the 
functoriality of the cellular cohomology (Fig. 3). If 
we are given the data of ‘objects’ and ‘maps (mor-
phisms) between objects’ satisfying suitable condi-
tions, they are generally called a category. If we have 
two categories and a rule to assign objects and mor-
phisms of one of them to those of the other, it is called 
a functor. Using these terminologies, we can say that 
the cellular cohomology is a functor from the catego-
ry of CW complexes to the category of (graded) vec-
tor spaces. 

The functoriality of the cellular cohomology 
extracts much information from continuous maps. 
Indeed, it transforms any continuous map to a linear 
map, and any linear map can be represented by a 
matrix after fixing the basis of the vector spaces. A 
matrix is simply a table of numbers, which is nothing 
but numerical data. By applying the theory of linear 
algebra such as determinant, trace, and eigen values, 
we can obtain essential information of the matrix, 
hence of the continuous map we started from.

The functoriality is also useful in the study of the 
symmetry of shapes, which is mathematically an 
action of a group on a shape (e.g., rotation of a circle). 
If the action on a shape X is continuous, then each 
member of a group gives a continuous map X → X, 
and the functoriality of the cellular cohomology 

Fig. 3.   Functoriality of cohomology.

H   (X ) H   (X )

Continuous map

Linear map

*2 Cellular cohomology: Cellular cohomology is defined only for 
CW complexes, but we can generalize this to another theory 
called ‘singular cohomology’, which can be applied to all topo-
logical spaces.

*3 Vector space: A set equipped with addition, subtraction, and sca-
lar multiplication satisfying suitable conditions. Any vector space 
can be identified with a set of numerical vectors, i.e., tuples of 
numbers by fixing a basis.

*4 Continuous map: Intuitively, a map f  between shapes (topological 
spaces) is continuous if the change in the value f(x) is small 
whenever the change in x is small. 
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induces a linear map H*(X) → H*(X). This is nothing 
but a representation of the group. 

7.   Cohomology in arithmetic geometry

Now, let us go back to arithmetic geometry. The 
aim of arithmetic geometry is to study the properties 
of algebraic varieties, i.e., the graphs of algebraic 
equations. If we consider the solutions in real (or 
complex) numbers, then the graphs have continuous 
nature since the set of real or complex numbers has a 
continuous geometric structure. Hence, we can apply 
the cellular cohomology to study graphs. 

However, the main target of number theory is the 
solutions in integers, rational numbers, etc. These 
numbers are non-continuous, hence, so are the 
graphs. It is not a good idea to apply cellular 
cohomology to study such non-continuous graphs 
since it was developed to capture the continuous 
nature of shapes. 

To overcome this difficulty, Alexander Grothendi-
eck, a founder of arithmetic geometry, introduced the 
étale cohomology as an analog of cellular cohomol-
ogy in the context of arithmetic geometry. He and his 
collaborators proved and published the fundamental 
results on étale cohomology [1]. Similarly to the cel-
lular cohomology, the étale cohomology assigns vec-
tor spaces to algebraic varieties and has a certain 
functoriality (we must replace ‘continuous maps’ 
with ‘morphisms of algebraic varieties’). The main 
idea of cellular cohomology is to regard a shape as a 
structure built with small pieces (cells) and extract 
global information from those pieces. The idea of 
étale cohomology is similar—we split algebraic vari-
eties into small pieces (in a suitable sense) and glue 
them to recover the global structure—but its actual 
construction uses many abstract concepts such as 
categories, functors, and sheaves developed in the 
20th century. This abstract approach is not so-called 
abstract nonsense. Grothendieck used these abstract 
concepts to upgrade the concepts from the usual 
geometry. 

The theory of étale cohomology is abstract and 
complicated but very powerful and has continuously 
provided many applications in arithmetic geometry, 
including the proof of the Weil conjecture (an analog 
of the Riemann hypothesis) by Deligne [2] and the 
proof of Fermat’s last theorem by Wiles [3, 4]. It 
might be fair to say that arithmetic geometry cannot 
even exist without the theory of étale cohomology. 

Modern mathematics has created many new con-
cepts, including categories, functors, and sheaves. 

The extremely abstract nature of those concepts often 
gives the impression that mathematicians are deliber-
ately trying to make things difficult. However, these 
abstract concepts were created to achieve simple 
goals, such as ‘to create a meaningful geometry even 
in a discontinuous world’. Throughout history, new 
mathematical concepts were often considered 
abstract and without substance but were widely 
accepted by societies afterwards. Negative numbers 
and complex numbers are good examples, and 
cohomology is becoming one of them. Cohomology 
has been a powerful tool for capturing structures and 
patterns in data, opening a new field of topological 
data analysis providing new applications. 

8.   Motive

In addition to étale cohomology, various other 
cohomologies have been developed for different 
applications. Examples include de Rham cohomolo-
gy, which extracts the differential geometrical struc-
ture of algebraic varieties, and crystalline cohomolo-
gy, which extracts the analytic structure in the world 
of numbers with positive characteristics. These are 
created by focusing on different aspects of algebraic 
varieties and are seemingly unrelated to each other at 
first glance. Nevertheless, these different cohomolo-
gies share common properties. Various comparison 
theorems also hold. In other words, in certain set-
tings, different cohomologies can be isomorphic.

Why is there such a deep relationship between 
cohomologies coming from very different contexts? 
Is it simply a coincidence? Grothendieck’s answer 
was ‘no’. He conjectured that ‘behind the cohomolo-
gies of algebraic varieties, there must be a universal 
object unifying them’ and named this hypothetical 
object ‘motive’ [5].

The term motive (motif in French) originally meant 
the ‘driving force’ of the creation of art works, such 
as music or paintings. Grothendieck seems to have 
used this term to mean a driving force creating vari-
ous cohomologies. In fact, Grothendieck developed 
his theory by constructing the motive theory for 
cohomologies of algebraic varieties under the 
assumption that algebraic varieties are projective*5 

*5 An algebraic variety is called projective if it is identified with the 
set of solutions of homogeneous equations inside a projective 
space. A projective space is obtained by adding infinity point(s) 
to the usual coordinate spaces (affine spaces). Also, if an algebra-
ic variety has a self-intersection point or a sharp point, they are 
called singular points. An algebraic variety is smooth if it does 
not have singular points. 
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and smooth. His theory is now called the theory of 
pure motive. 

9.   Mixed motive

However, Grothendieck’s theory can be applied 
only to cohomologies for projective smooth varieties. 
In fact, most of the cohomologies for projective 
smooth varieties are generalized for smooth varieties 
that are not necessarily projective, and they are very 
important in arithmetic geometry. Thus, after 
Grothendieck, there were many attempts to general-
ize the theory of pure motive by removing the projec-
tivity condition. The result was the theory of mixed 
motives, which was constructed independently by 
Masaki Hanamura, Marc Levine, and Vladimir 
Voevodsky in different formulations. Let us discuss 
Voevodsky’s method [6].

Roughly speaking, Voevodsky’s idea is to construct 
an analogue of cellular cohomology (or, more gener-
ally, singular cohomology) in the framework of alge-
braic geometry. As mentioned above, it is difficult to 
capture number-theoretic information (e.g., solutions 
in rational numbers) of algebraic equations by using 
the usual cellular cohomology. This is because the 
continuous deformation kills such information—
whether a point on the graph is a solution in rational 
numbers is completely lost if the point is moved even 
slightly.

Voevodsky constructed the concept of continuous 
deformation that makes sense even in the discontinu-
ous world of integers and rational numbers. Mathe-
matically, the usual continuous deformation inside a 
space X is formalized as a continuous map from the 
product of X and the real number line to X. In other 
words, the real number line plays the role of the space 
of deformation parameters (i.e., time axis). However, 
as explained above, the real number line (which is a 
continuous space) cannot be used to capture number-
theoretic information. Therefore, instead of the real 
number line, Voevodsky used the affine line, which is 
a convenient algebraic variety that represents a ‘one-
dimensional coordinate axis’ regardless of the range 
in numbers under consideration. It corresponds to the 
real number line in the world of real numbers and to 
the complex plane in the world of complex numbers 
(the complex plane is a one-dimensional space repre-
sented by one complex variable, though it is two-
dimensional from the standpoint of real numbers).

Voevodsky’s idea is very simple, but there were 
many technical difficulties to overcome. He success-
fully established his theory in a very satisfactory way. 

As naturally expected from the design, his theory 
produces an algebro-geometric analogue of cell com-
plex (and its generalization, singular complex), 
which is called the mixed motive. The mixed motive 
has the information of various cohomologies of alge-
braic varieties. For example, singular cohomology, 
étale cohomology*6, and de Rham cohomology can 
all be derived from the mixed motive. In other words, 
the mixed motive is the ‘seed’ of the various 
cohomologies. Voevodsky used his theory to prove a 
new comparison theorem for cohomologies, called 
the Milnor conjecture (and its generalization, the 
Bloch–Kato conjecture), for which he received the 
Fields Medal.

10.   Towards a further generalization of motive

One of the most important and fundamental proper-
ties of the mixed motive is homotopy invariance. In 
the usual theory of continuous deformation, we use 
the real number line as the space of the deformation 
parameter. This automatically implies that a real 
number line can be continuously deformed to a single 
point. If we consider a continuous deformation that 
transfers a point x on the real number line to the point 
(1 – t)x at time t, the point at the initial position  
(1 – 0)x = x will be moved to the origin (1 – 1)x = 0 
at time t = 1.

In the theory of mixed motives, the affine line is 
used as a replacement of the real number line. There-
fore, the affine line is ‘continuously deformed’ to a 
single point for the same reason as above. This, in 
turn, means that in the theory of mixed motives, there 
is no distinction between the affine line and a single 
point. This property is called the homotopy invari-
ance of mixed motive.

Homotopy invariance is powerful, implying vari-
ous useful facts about mixed motives. However, it 
also imposes a fundamental restriction: the cohomol-
ogy captured by the theory of mixed motive is limited 
to those satisfying homotopy invariance, while many 
cohomologies in arithmetic geometry do not satisfy 
homotopy invariance.

My collaborators and I have therefore constructed 
the theory of ‘motives with modulus’ that generalizes 
the theory of mixed motive by replacing homotopy 
invariance with a ‘weaker’ property and recasting the 
whole theory from scratch [7–9]. Many useful 
cohomologies appearing in arithmetic geometry are 

*6 Étale cohomology: Precisely, we refer to the l-adic étale co-
homology.
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expected to be controlled by this new framework. 
Cohomologies that do not satisfy homotopy invari-
ance, including cohomology of the structure sheaf, 
Hodge cohomology, cyclic cohomology, and Hodge–
Witt cohomology have been proven to be controlled 
by the theory of motives with modulus. 

11.   Future perspectives

The theory of mixed motives is expected to control 
a wide class of cohomologies not captured by the 
classical motive theory. Our future aim is to control 
the theory of p-adic cohomologies, which has made 
remarkable progress. The étale cohomology referred 
to in this article is precisely what is often referred to 
as l-adic étale cohomology (l-adic cohomology for 
simplicity). The slogan is that l-adic cohomology 
captures the topological aspects of algebraic variet-
ies, whereas p-adic cohomologies focus on the ana-
lytic aspects. Despite this difference, it is observed 
that there are interesting similarities and correspon-
dences between the two. Therefore, it is naturally 
expected that there could be a hidden ‘motive’ behind 
them. An obvious problem is that p-adic cohomolo-
gies (at least part of them) are not homotopy invariant 
and cannot be captured using the classical motive 
theory. However, if p-adic cohomologies can be con-
trolled by the theory of motives with modulus, com-
paring these theories on a common ground will 
become possible. The future success of our attempt 

will elucidate the unknown mechanism by which 
mysterious similarities between cohomologies are 
produced and will significantly impact the entire 
study of number theory.
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1.   Introduction

In this article, we focus on matrix Lie groups, that 
is, groups of matrices with the operation of the usual 
matrix product (i.e., composition of linear forms), the 
most basic example of which is the general linear 
group over the complex numbers. Since Lie groups 
are also geometrical objects (differentiable mani-
folds), both the group structure and differentiable 
structure coexist in a single object and must be 
accounted for. Starting from certain special represen-
tations of these groups, we introduce research on 
several areas of mathematics, including new research 
directions and open problems.

1.1   Groups
A group G is a set with an operation (generically 

called “product”) G × G ∋ (g, h) → gh ∈ G that is asso-
ciative, i.e., (gh)k = g(hk) for g, h, k ∈ G. In addition, 
G must have an identity element e ∈ G such that ge = 
eg = g holds for all g ∈ G, and for all g ∈ G there must 
be an inverse element g–1 such that gg–1 = g–1 g = e.

The main examples of groups in this article are the 
symmetric group of m elements 𝔖m, i.e., the groups 
of permutations of m letters with the operation of 
composition, and the general linear group GLn(ℝ) 

(resp. GLn(ℂ)), the group of n dimensional square 
nonsingular (invertible) matrices with real (resp. 
complex) entries with the usual matrix multiplica-
tion.

1.2    Lie groups, Lie Algebras and their represen-
tations

A representation (π, V) of G is a group homomor-
phism π from G to the group of linear transformations 
GL(V) of a vector space V. We normally consider only 
vector spaces over the complex numbers. In this set-
ting, we say that G acts on V, or that V is a G-module, 
and if it is clear from the context, we omit the nota-
tion π. To consider an infinite dimensional V, it is 
indispensable to introduce the notion of topology; 
thus, we only consider finite dimension. By introduc-
ing a Hermitian inner product to the n-dimensional V, 
we may consider the group U(n) of unitary matrices, 
the group of matrices that leave the inner product 
invariant. The development of representation theory 
took place in parallel with the revolutionary physical 
theories of relativity and quantum physics, resulting 
in a notation and terminology that mixes mathemati-
cal and physical subtleties and may be confusing at 
first but that is not without merit.

As mentioned above, Lie groups are manifolds with 
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geometric structure and notions such as “curvature” 
and “connectedness,” so they cannot be described 
faithfully only with linear algebra. Because of this, 
and to the extent possible, instead of G, we consider 
the associated “differentiated” Lie algebra 𝔤. Since 𝔤 
is equivalent as a vector space to the set of tangent 
vectors at the identity e ∈ G, its action is regarded as 
the infinitesimal version of the Lie group action. In 
this article, we only consider finite-dimensional rep-
resentations, so Lie algebras suffice, but we note that 
this is not the case for general Lie groups and repre-
sentations.

The Lie algebra 𝔤𝔩n(ℂ) of the Lie group GLn(ℂ) is 
the ring of all n-dimensional matrices. For a matrix X 
∈ 𝔤𝔩n(ℂ), the exponential map satisfies det(expX) = 
etrX ≠ 0, thus expX ∈ GLn(ℂ) is the corresponding Lie 
group element. Therefore, if the action of GLn(ℂ) on a 
polynomial f over Matn is (g. f )(x) = f(g–1x), the 
infinitesimal action of 𝔤𝔩n(ℂ) is given by

(X. f )(x) = d
dt  f(exp(–tX)x)|t=0.

1.3    Motivation for the representation theoretical 
study of α-determinant

The α-determinant is a generalization of both the 
determinant and permanent*. In the definition of the 
α-determinant, given below, the sign changes appear-
ing in the definition of the determinant are replaced 
with certain weights depending on the parameter α. 
By setting α = –1 we recover the definition of the 
usual determinant and with α = 1, that of the perma-
nent. It was originally introduced as α-permanent by 
Vere-Jones [1] in the context of probability theory. 
The name α-determinant follows the convention of 
Tomoyuki Shirai and Yoichiro Takahashi [2]. They 
used the α-determinant to construct point processes 
that generalize the ones used in finance and time-
series analysis, namely, the boson point process, fer-
mion point process, and Poisson point process.

Surprisingly, when α ≠ –1 the α-determinant loses 
the multiplicative property of the usual determinant, 
that is, det(AB) = det(A) det(B). Thus, we immedi-
ately ask the following problem question.

Problem 1: Where did the multiplicative property 
go?

The determinant is a one-dimensional representa-
tion of GLn (ℂ). While the permanent does not define 
a one-dimensional representation, it defines an irre-
ducible representation of the vector space spanned by 
the symmetric tensor product. With irreducible repre-

sentation, we refer to a subspace of V, different from 
{0} and V itself, that is invariant under the action of 
G. Informally, we may think of irreducible represen-
tations as prime numbers or elementary particles in 
particle physics. Therefore, we may also ask the fol-
lowing problem question.

Problem 2: For general α, what is the structure of 
the spaces spanned as the group acts on the 
α-determinant?

These two questions sparked the interest of the sec-
ond author of this article in the representation theory 
of the α-determinant [3].

2.   The α-determinant

For a fixed α, the α-determinant of a square matrix 
A = (aij) ∈ Matn is a modification of the usual deter-
minant defined as

det(α)A ≔ ∑ αn–νn(σ) aσ(1)1 ⋯ aσ(n)n.

Here, νn(σ) is the cycle number of a permutation σ ∈ 
𝔖n, i.e., the number of cycles in the cycle decomposi-
tion of σ. Hereafter, we write ν(σ) := n – νn(σ) and 
note that ν(σ) is the minimum number of transposi-
tions required to express σ.

A theorem of Vere-Jones [1] is that det(In – αTA)– 1
α 

can be expanded in terms of the α-determinant as

det(In – αTA)– 1
α 

= ∑ 1
k!

   ∑ ti1 ⋯ tikdet(α) (aip,iq)1≤p,q≤k, 

T = (tij) ∈ Matn.

We refer the reader to a previous study [4] for details 
on the discovery of the formula and its applications.

2.1   Preliminaries from representation theory
It is well known that the finite dimensional irreduc-

ible representations (irreducible 𝔤𝔩n-modules) of 
GLn(ℂ) and its Lie algebra 𝔤𝔩n(ℂ) are parametrized by 
the so-called highest weights. With respect to the 
standard action of GLn(ℂ) on ℂn, the natural action of 
GLn(ℂ) on the tensor product (ℂn)⊗m commutes with 
the action of 𝔖𝔪 permuting the m spaces in the tensor 
product, because there is a duality between the two 
actions. This is the well-known Schur–Weyl duality 
[5]. From this perspective, the highest weights are 

σ∈𝔖n

k≥0 i1,…,ik≥0

* Permanent: A matrix function like the determinant but with no 
sign changes in the definition.
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identified with partitions of integers. We say that the 
vector of non-negative integers λ = (λ1, λ2, …, ..) is a 
partition of n, written as λ ⊢ n, when it satisfies n = λ1 
+ λ2, + ⋯ (λ1 ≥ λ2 ≥ ⋯). The length l(λ) is the number 
non-zero parts of the partition λ.

A λ is often identified with the associated Young 
diagram, defined by

{(i, j) ∈ ℤ2│1 ≤ j ≤ λi, i ≥ 1}.

It is customary to illustrate the Young diagrams as 
left-aligned arrangements of boxes with λi boxes in 
the i-th row, as shown in Fig. 1(a). If we arrange the 
n numbers 1, 2, …, n in a Young diagram λ such that 
numbers in a row increase from left to right and in 
each column the numbers increase from top to bottom 
we obtain a standard tableau of shape λ (Fig. 1(b)). 
The set Stab(λ) is the set of all standard tableaus of 
shape λ and is a fundamental notion in the representa-
tion theory of the symmetric group.

2.2   Cyclic modules arising from α-determinant
The action of 𝔤𝔩n(ℂ) on the ring of polynomial func-

tions 𝒜(Matn) on the variables {xij}1≤i,j≤n is given by 
the differential operators

Eij. f = ∑ xik ∂f
∂xjk

.

Here, {Eij} (1 ≤ i, j ≤ n) is the standard (matrix ele-
ments) basis of 𝔤𝔩n(ℂ).

For X = (xij), we denote as Vn(α) the cyclic 𝔤𝔩n(ℂ)- 
module generated by det(α)X. In other words, Vn(α) is 
the vector space (module) generated by the (repeated) 
action of elements of 𝔤𝔩n(ℂ) on det(α)X ∈ 𝒜(Matn). 
For α = –1, we have det(α)X = detX; thus, Vn(–1) = 
ℂ⋅detX. Therefore, the study of the structure of Vn(α) 
is an important step towards the answer to both Prob-
lems 1 and 2.

Theorem 2.1 [3]. Let En
λ be an irreducible 𝔤𝔩n(ℂ)- 

module of highest weight λ. Then, Vn(α) has the irre-
ducible decomposition

Vn(α) ≅ ⨁(En
λ)⊕f λ.

Here, f λ := |Stab(λ)| and fλ(x) := ∏(i,j)∈λ (1 + (j – i)x)  
is the content polynomial of λ. 

This theorem shows that if α ∉ {±1, ± 1
2 , …, ± 1

n–1}, 
Vn(α) is equivalent to the standard representation of 
the tensor product (ℂn)⊗n of ℂn, and that the structure 
degenerates when α is the reciprocal of an integer 
with an absolute value smaller than n.

It is also natural to generalize this situation and 
consider the cyclic 𝔤𝔩n-module generated by the 
power (det(α)X)l. In this case, the highest weight mod-
ules appearing in the decomposition have nontrivial 
multiplicity given by a combinatorial quantity, and 
computing this multiplicity is generally a difficult 
problem. When n = 2, the pair (𝔖2l, 𝔖l × 𝔖l ) of a sym-
metric group and Young subgroup is a Gelfand pair, 
which enables one to write the multiplicity in terms 
of zonal spherical functions given explicitly by 
hypergeometric polynomials [6]. The general case is 
still open and currently there is not even a conjectural 
form for the multiplicity. Moreover, one of the classic 
and fundamental notions in the theory of symmetric 
functions is plethysms [7]. In a previous study [8], for 
the power of det(1)(X) (permanent) and the generated 
cyclic module structure, a conjecture that is related 
with plethysms for the symmetric tensor product was 
presented. The case of general n appears to be diffi-
cult, but it has been verified for n = 2 and arbitrary l, 
as well as for n = 3 and l = 2. Note that analogous 
research has been conducted for quantum groups [9]. 
For n = 2, the multiplicity is given both by hypergeo-
metric polynomials and q-hypergeometric polynomials. 
This is a fascinating and promising line of research 
[10, 11].

n

k=1

λ⊢n
fλ (α)≠0

Fig. 1.   Young diagrams: visual representations of partitions.

(a) Young diagram of the partition (5,3,2) ⊢ 10 (b) Example of standard tableau
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3.   Wreath determinant

As discussed in the previous section, when α takes 
the values ± 1

k , the structure of the cyclic module 
structure arising from the α-determinant changes 
drastically. A careful analysis shows that when α = –
1
k , there is a weak form of the alternating property of 
the usual determinant.

Let K denote the subgroup of 𝔖n consisting of per-
mutations that fix any elements except from k + 1 
taken (arbitrary) from 1, 2, …, n. Then, for A ∈ Matn 
we observe that the sum ∑σ∈K det(α) (AP(σ)) contains 
the factor (1 + α)(1 + 2α) … (1 + kα) (A ∈ Matn), 
where P(σ) is the permutation matrix of σ ∈ 𝔖p. In 
other words, the sum ∑σ∈K det(– 1

k ) (AP(σ)) vanishes 
and if k + 1 columns of A are equal we have det(– 1

k ) A 
= 0, generalizing the alternating property of the usual 
determinant.

Since det(α) (AP(σ)) = det(α) (P(σ)A), the foregoing 
discussion holds similarly for rows. A consequence of 
the weak alternating property is that we have analogs 
of Vandermonde and Cauchy determinant formulas 
[12].

3.1   Invariant theory of wreath determinants
We denote by 1p,q the matrix of size p × q with all 

entries equal to 1. For A ∈ Matn,kn, the k-wreath deter-
minant is defined by

wrdetkA ≔ det(– 1
k )(A ⊗ 1k,1).

For example, we have

wrdet2 (a1   a2   a3   a4
b1   b2   b3   b4) 

= det(– 1
2) (a1   a2   a3   a4

a1   a2   a3   a4
b1   b2   b3   b4
b1   b2   b3   b4

)
= a1a2b3b4

4  – a1a3b2b4
8  – a2a3b1b4

8  

– a1a4b2b3
8  – a2a4b1b3

8  + a3a4b1b2
4 .

Like the usual determinant, the wreath determinant 
is characterized by its left-GLk, right-𝔖k ≀ 𝔖n relative 
invariance. Here, 𝔖k ≀ 𝔖n is the wreath product of the 
groups 𝔖k and 𝔖n and is defined using the concept of 
the semidirect product of groups (a technique used to 
obtain a new group from two known groups).

Theorem 3.1 [12]. A map f: Matn,kn → ℂ with proper-
ties 

1.  f is a multilinear map with respect to the col-
umns,

2.  f(QA) = (detQ)k f(A) holds for any Q ∈ Matn, that 
is, f is left-GLk relative invariant, and

3.  f(AP(σ)) = ±f(A) holds for any σ ∈ 𝔖k ≀ 𝔖n (if σ 
∈ 𝔖k

n we have f(AP(σ)) = f(A)) 
is equal to the map A ↦ wrdetk A up to a scalar mul-
tiple. 

While this theorem may be proved in an elementary 
manner, it is also an easy consequence of the invari-
ant theory of the underlying (GLn, GLkn)-duality.

3.2    An analog of group determinant for group-
subgroup pairs using wreath determinants

Ferdinand Georg Frobenius developed the theory 
of group characters in his study of the group determi-
nant for non-abelian groups. For a finite G, consider 
an indeterminate xg for each group element g ∈ G, 
then the group determinant is given by

Θ(G) ≔ det(xuv–1)u,v∈G.

The group determinant is a complete invariant with 
respect to the isomorphism classes of groups. Con-
cretely, it holds that

Θ(G) = Θ(G') ⇔ G ≅ G'.

The main result of Frobenius is the factorization of 
the group determinant into irreducible polynomials 
with coefficients given by the group characters, in 
modern terms this is equivalent to the decomposition 
of the regular representation of a group (the action of 
G on its group ring) into irreducible representations.

The origin of the work of Frobenius in the group 
determinant is a letter by Richard Dedekind in 1896. 
Dedekind had previously discovered how to factorize 
the group determinant for abelian groups and posed 
the problem for general non-abelian finite groups to 
Frobenius. It is not an exaggeration to say that this 
letter marked the beginning of representation theory 
of finite groups.

Recall that the k-wreath determinant is defined for 
n × kn matrices; therefore, by considering a pair (G, 
H) of a finite G and subgroup H of index k, by analogy 
we may define

Θ(G, H) ≔ wrdetk(xhg–1)h∈H,g∈G.

Note that since the wreath determinant does not have 
an invariance with respect to column transpositions, 
this definition depends on the ordering of the matrix 
columns and rows. Therefore, it is necessary to  
consider a fixed numbering (or naming) of the group 
elements. For a fixed bijection ϕ: {0, 1, …, kn – 1} → 
G, we say that gi = ϕ(i) is a numbering of G. For a 
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ℂ-algebra A (e.g. a polynomial ring in kn – 1 variables) 
a map f: gi ↦ qi is called specialization. When G is an 
abelian group, for a reasonable numbering of the ele-
ments of G, we may consider the specialization f: gi 
↦ qi to see that the determinant Θ(G, H) factors into 
products of polynomials of the form qi – 1 [13].

Let us give a concrete example. From the partition 
(k, …, k) ⊢ kn and corresponding irreducible charac-
ters χ(kn) of 𝔖k

n, we define a 𝔖k
n-bi-invariant function 

ω(kn) on 𝔖kn by averaging over 𝔖k
n. Concretely, we 

define

ω(kn)(x) = 1
(k!)n   ∑ χ(kn) (xg)     (x ∈ 𝔖kn).

Example 3.2. For G = ℤn × ℤn and H = ℤn × {0}, we 
have

Θ(G, H) =  ω(nn) (στ–1) ( n!
nn )n

 q
n3(n–1)

2

(qn – 1)n(n–1).

Here, σ, τ ∈ 𝔖n2 and we define P(τ) = P((1 2 … n)) ⊗ 
P((1 2 … n)), 11,n ⊗ In = (In ⊗ 11,n)P(σ) to obtain

 ω(nn)(στ–1) = 1
n!n × {coefficient of square-

free elements ∏ xij in (det(xij)1≤i,j≤n)n }.

Note that if n = 3, we have Θ(G, H) = 0.
A comprehensive theory of group-subgroup wreath 

determinant has not yet been developed, but two 
related developments have surfaced, one is related to 
the Alon–Tarsi conjecture by Kazufumi Kimoto and 
the other is the construction of new graphs based on 
group and subgroups.

3.3   Alon–Tarsi conjecture
A Latin square is a square arrangement (i.e. a n × n 

matrix) filled with the numbers 1 ∼ n in such a way 
that in each row and column, each number appears 
exactly once. For instance, the 12 Latin squares of 
size 3 are

(1   2   3
2   3   1
3   1   2), (1   2   3

3   1   2
2   3   1), (2   3   1

1   2   3
3   1   2), (2   3   1

3   1   2
1   2   3), 

(3   1   2
1   2   3
2   3   1), (3   1   2

2   3   1
1   2   3), (1   3   2

2   1   3
3   2   1), (1   3   2

3   2   1
2   1   3), 

(2   1   3
1   3   2
3   2   1), (2   1   3

3   2   1
1   3   2), (3   2   1

1   3   2
2   1   3), (3   2   1

2   1   3
1   3   2).

The sign sgn L of a Latin square L is the product of 

the signs of all column and row permutations. If sgn 
L = 1, we say L is even and odd if sgn L = –1.

If n is an odd number, the formula sgn(P((1,2))L) = 
(–1)n sgn L holds for the transposition (1,2), giving a 
bijection between odd and even Latin squares and 
showing that the number of odd and even Latin 
squares of odd size n is equal. For even numbers the 
problem is still open.

Conjecture 3.3 (Alon–Tarsi conjecture 1992). For 
an even number n, the number of even and odd Latin 
squares of size n is different. 

While the conjecture originated in graph coloring 
problems, it has interesting and nontrivial equivalent 
formulations such as the Rota basis conjecture on a 
certain special choice of basis for an n dimensional 
vector spaces, and the non-vanishing of certain inte-
grals over the special unitary group SU(n) with 
respect to the square-free coordinate product Haar 
measure (SU(n) bi-invariant measure). Kimoto also 
discovered the equivalence of the Alon–Tarsi conjec-
ture in terms of the wreath determinant [12].

Theorem 3.4. Let n be an even number. The Alon–
Tarsi conjecture is equivalent to any of the following 
three statements below.

1. wrdetn (In In … In)  ≠ 0,

2. ω(nn) (gn) ≠ 0,

3. ∑y∈𝔖n
n (– 1

n )ν(gny) ≠ 0.

Here, gn ∈ 𝔖n2 is a permutation satisfying gn((i – 1)n 
+ j) = (j – 1)n + i(1 ≤ i,j ≤ n) and 𝔖n

n is the set of per-
mutations of 𝔖n2 that fix the set {(i – 1)n + j|1 ≤ j ≤ n}
(i = 1, …, n). 

The Alon–Tarsi conjecture is easy to verify for spe-
cific cases, but as usual in number theory and combi-
natorics, the proof appears to be a formidable chal-
lenge. The best results to date are those of Drisko 
(1997) for n = p + 1, where p is a prime number, and 
of Glynn (2010) for n = p – 1 (see [14] for a review 
up to 2019). It is worth mentioning that an alternative 
proof of the latter result using the wreath determinant 
has been given by Kimoto [15, 16].

For the number of Latin squares ls(n), although it is 
a weak result, we remark that the asymptotic formula 
ls(n)1/n2) ∼ e–2n is known [17]. One of the reasons that 
explains that the Alon–Tarsi conjecture may be diffi-
cult to solve is that the number of even and odd Latin 
squares appear to be asymptotically equal.

g∈𝔖k
n

i,j=1

n { n
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Let us propose a new research problem.

Problem 3.5. Find a suitable definition of a Latin 
square zeta function ζLS (s) such that we have the fol-
lowing equivalence:

 best estimate in the prime number theorem (↔ Rie-
mann hypothesis): ζ(s) = Alon–Tarsi conjecture 
ζLS(s).

In other words, such that the Alon–Tarsi conjecture 
is equivalent to a Riemann hypothesis’ analog for 
ζLS(s), it might be helpful to compare the Alon–Tarsi 
conjecture with the phenomenon of Chebyshev’s bias 
for prime numbers.

3.4   Group-subgroup pair graphs
In graph theory, there is an important class of 

graphs known as Ramanujan graphs. Ramanujan 
graphs are theoretically the best expanders, i.e., 
graphs with rapid mixing and good diffusion proper-
ties. The properties of Ramanujan graphs make them 
particularly important for applications, including the 
construction of cryptographic hash functions. A 
graph being Ramanujan is equivalent to the analog of 
Riemann Hypothesis for the Ihara zeta function of the 
graph, making it also interesting from the point of 
view of number theory. 

The main problem in this area is the construction of 
explicit families of Ramanujan graphs of fixed 
degree. Some known examples are the Lubotzky–
Phillips–Sarnak graphs (1994), constructed with 
Cayley graphs of projective linear groups over finite 
fields using the theory of Hamiltonian quaternion 
algebras and their maximal orders, and Pizer graphs 
(1990), based on the theory of isomorphism classes 
(isogenies) of hyperelliptic curves over finite fields. 
In the former, for a prime number p congruent to 1 

modulo 4, the resulting graphs are a family of (p + 
1)-regular Ramanujan graphs. A Cayley graph is a 
regular graph constructed from the elements of a 
finitely generated G and where the edges are defined 
using the (group) multiplication using a generating 
set S.

A new research direction is defining hash functions 
for group-subgroup pair graphs, which are a general-
ization of Cayley graphs (see Fig. 2), and studying 
their cryptographic properties [18]. For a G, subgroup 
H and a subset S ⊂ G such that S ∩ H is a symmetric 
set, the group-subgroup pair graph, or simply pair-
graph, 𝒢(G, H, S) is a graph defined in a manner 
analogous to Cayley graphs, but such that the result-
ing graph is not generally regular. Concretely, 𝒢(G, H, 
S) is a graph, the vertices of which are the elements of 
G and such that h ∈ H and g ∈ G are connected by an 
edge when they satisfy the relation h ∼ g ⇔ g = hs (s 
∈ S) [19]. While examples of Ramanujan group-sub-
group pair graphs are known for the regular case (see 
Fig. 2(b)), infinite families have not yet been con-
structed. The construction of infinite families of 
Ramanujan graphs is one of the major goals in the 
theory of pair-graphs from the point of both mathe-
matics and applications

4.   Perspectives on positive singular values: 
Wishart distribution, Wallace sets, and positivity 

of α-determinant

A natural problem is to consider the positive case α 
= 1

k  as a generalization of the permanent in a similar 
manner to the wreath determinant for negative singular 
values. We conclude this article with hints that may 
serve as a starting point for this research.

The study of positive definite functions on convex 
cones on Euclidean spaces has applications to several 

Fig. 2.    (a) Pair-graph of cyclic group of 18 elements, cyclic group of 6 elements. (b) Pair-graph of symmetric group 𝔖4, 
alternating group A4.

(a) Irregular group-subgroup pair graph (b) Ramanujan (regular) pair-graph
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areas, including optimization and probability. In the 
analysis of Hilbert spaces of holomorphic functions 
on symmetric cones (symmetric spaces of Lie groups) 
and its unitary representation, there is an important 
notion called Wallach set. For the integral kernel of 
symmetric cones, the set is basically given by recip-
rocals α = 1

k  of the positive singular values [20].
In statistics, there is multivariate generalization of 

the χ-square distribution for positive definite matri-
ces, called Wishart distribution. Let n mutually inde-
pendent p-variate random vectors {x1, x2, …, xn}, with 
n ≥ p, follow a multivariate normal distribution N(0, 
Σ) with mean 0 and covariance matrix Σ. Then, the 
random variable X = ∑n

k=1 xi  t xi is said to follow the 
Wishart distribution. The Wishart distribution is used 
to model the distribution of a sample covariance 
matrix for data following a multivariate normal dis-
tribution, after scaling by sample size. The Wishart 
distribution, due to the intimate relation with sym-
metric cones of positive definite matrices, also has 
applications to the representation theory of Jordan 
algebras [20]. On the other hand, it is known that the 
α-determinant has an interpretation in terms of the 
Wishart distribution [21]. Using this relation, Shirai 
proved that if α is an element of {2/k}1≤k<n, or 
{–1/k}1≤k<n, then the α-determinant is non-negative 
for non-negative definite Hermitian real symmetric 
matrices. The proof uses Jack polynomials [7], an 
important example of symmetric functions. As is 
evident, these values also correspond to the positive 
singular values described in this article and the values 
of the Wallach set. It is difficult to expect that all of 
this is a coincidence, so an important research direc-
tion is to clarify this situation and explain the relation 
between these distinct areas.
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1.   Introduction

Lie groups are abstractions of continuous symme-
tries of spaces, and linear symmetries are abstracted 
by representations of Lie groups [1]. These are useful 
for analyzing functions on spaces with symmetries. 
However, Lie groups are non-linear objects, and it is 
not easy to treat their representations directly. To 
overcome this non-linearity, it is useful to consider 
the representations of Lie algebras by taking the dif-
ferentials (linear approximations) of representations 
of Lie groups. These differentials preserve much 
information on the original representations and are 
easier to treat. 

2.   Representations of Lie groups

First, a Lie group is defined as a subset of the set of 
all n × n invertible matrices with complex entries 
(which is denoted as GL(n, ℂ) and called the general 
linear group), closed by the products, the inverses, 
and taking the limits*1. For example, GL(n, ℂ), 

GL(n, ℝ) = 
{n × n invertible matrices with real entries}, 
SL(n, ℂ) = {g ∈ GL(n, ℂ) | det(g) = 1},
O(n) = {g ∈ GL(n, ℝ) | gtg = In}, and

U(n) = {g ∈ GL(n, ℂ) | gtg̅ = In}

are typical examples of Lie groups (where In is the 
identity matrix). Next, let G be a Lie group, and X be 
a space such that “convergence can be defined” (i.e., 
a topological space). If a transformation τ(g): X → X 
is given for each element g ∈ G and if it satisfies the 
associative law and the continuity in a suitable sense, 
we say that G acts on X. For example, rotations of the 
unit disk (the disk of radius 1) around the origin are 
regarded as the action of the Lie group U(1). Simi-
larly, conformal transformations of the unit disk, i.e., 
transformations that preserve angles of two intersect-
ing curves, are almost regarded as the action of the 
Lie group SU(1, 1) (Fig. 1). These examples show 
that an action of G on X controls the symmetries of X. 

When the space X = V on which G acts is a linear 
space and τ(g) is a linear map on V (i.e., it preserves 
additions and scalar multiplications), (τ, V) is called 
a representation of G. For example, if G acts on X, 
then G acts automatically on the space of functions on 
X (e.g., V = L2(X) = {f : X → ℂ | ∫X|f (x)|2dx < ∞}: the 
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space of square integrable functions). This action on 
L2(X) is linear and becomes a representation of G. 
Such representation is in general infinite-dimensional 
and looks difficult, but in many cases, it consists of a 
sum of simpler representations. Therefore, to under-
stand function spaces, it is important to understand 
simpler representations in detail. 

The most elementary example of representations of 
a Lie group G ⊂ GL(n, ℂ) is V := ℂn (the space of col-
umn vectors), with τ(g) defined by the product of 
matrices 

τ(g): ℂn → ℂn,    τ(g)v := gv

for each g ∈ G. As more non-trivial examples, for a 
non-negative integer k, the action of the Lie group G 
= U(n) on the linear space

V = 𝒫k(ℂn)
:=  {f (x) = f (x1, …, xn): polynomial of n  

variables | f (tx) = tk f (x) (t ∈ ℂ)}

(the space of homogeneous polynomials of n vari-
ables, degree k), with τ(g) defined by the product of 
matrices on the variables becomes a representation. 
Similarly, the action of the Lie group G = O(n) on the 
linear space

V = ℋk(ℂn) ≔ {f (x) ∈ 𝒫k(ℂn) | ∑n
j=1

∂2f
∂xj

2  = 0}
(the space of homogeneous harmonic polynomials of 
n variables, degree k), with τ(g) defined similarly 
also becomes a representation. The representation of 
U(n) on 𝒫k(ℂn) and that of O(n) on ℋk(ℂn) are exam-
ples of irreducible representations. “Irreducible” 
means that the representation can no longer be 
decomposed, or there are no linear subspaces W ⊂ V 
satisfying τ(G)W ⊂ W other than {0} and V. 

3.   Irreducible decompositions of 
representations—Generalization of 

Fourier analysis

One of the most fundamental problems in represen-
tation theory is to decompose a given representation 
into a sum of irreducible representations. The irre-
ducible decomposition of the function space (e.g.  
L2(X)) on X with an action of G is useful for under-
standing X. For example, G = O(n) acts on the n–1-di-
mensional sphere Sn–1 := {x ∈ ℝn | ∑n

i=1 xi
2 = 1} by the 

usual rotations and acts on the function space L2(Sn–1) 
linearly. The space of the restriction of homogeneous 
harmonic polynomials of degree k on the sphere Sn–1 
(spherical harmonic functions, denoted as ℋk(ℂn)|Sn–1 
=: ℋk(Sn–1)) is then preserved by this action, and 
becomes a sub-representation. Namely, 

 If f (x) ∈ ℋk(Sn–1), then τ(g)f (x) ∈ ℋk(Sn–1) 
for all g ∈ O(n).

Moreover, each f (x) ∈ L2(Sn–1) is expressed uniquely 
by the form

f (x) = ∑fk(x),     fk(x) ∈ ℋk(Sn–1).

Hence, L2(Sn–1) is decomposed into the direct sum

L2(Sn–1) = ⨁ℋk(Sn–1).

Since each ℋk(Sn–1) is irreducible, this gives the irre-
ducible decomposition. When n = 2, by the coordi-
nate (cos θ, sin θ) of S1, we have 

ℋk(S1) = ℂeikθ + ℂe–ikθ = ℂ cos kθ + ℂ sin kθ
 = {aeikθ + a'e–ikθ = (a + a') cos kθ + i(a – a') 
sin kθ | a, a' ∈ ℂ},

and the above decomposition coincides with the  

k=0

∞

k=0

∞

Fig. 1.   Actions of 𝑈(1), 𝑆𝑈(1, 1) on unit disk.

� = {� ∈ ℂ ||�| < 1}: unit disk

� ∈ � = 
(1) = {��� │� ∈ ℝ},
�(�)� = ��� �: rotation around origin

� ∈ � = �
(1, 1) = {(           )│  
�

�
 

�,   ∈ ℂ, 
|�|2 − | |2 = 1} ,

angle preserving (conformal)
transformation�(�)� =               : �� +  

 � + � 
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Fourier series expansion

 f (cos θ, sin θ) = ∑akeikθ  
 
= a0 + ∑(bk cos kθ + ck sin kθ)

(bk = ak + a–k, ck = i(ak – a–k)). Similarly, the (inverse) 
Fourier transform

f (x) = ∫ℝ
f ̂(ξ)eixξ dξ

is regarded as the decomposition of the function 
space L2(ℝ) on the real line ℝ into the sum of one-
dimensional sub-representations ℂeixξ as the repre-
sentation of the additive group ℝ, 

L2(ℝ) = ∫ℝ

⊕
ℂeixξ dξ.

Note that this is a sum of uncountably many spaces 
and called the direct integral instead of the direct 
sum. Needless to say, the Fourier analysis is impor-
tant in many fields such as signal processing, and the 
theory of spherical harmonics is important in the 
treatment of rotation-invariant systems in quantum 
physics. Irreducible decompositions of general repre-
sentations are regarded as generalizations of these 
important theories. 

Among irreducible decompositions, the decompo-
sition of a representation of G under its subgroup G' ⊂ 
G is called the branching law. For example, we con-
sider the restriction of the representation 𝒫k(ℂn) of G 
= U(n) to the subgroup

G' = {( g
0    0

1 )│g ∈ U(n – 1)} ≃ U(n – 1).

Then as a representation of U(n), 𝒫k(ℂn) is irreducible 
but as a representation of U(n – 1), the subspaces 

 𝒫m(ℂn–1)xnk
–m := {f (x1, …, xn–1)xnk

–m | f (x1, …, 
xn–1) ∈ 𝒫m(ℂn–1)} ⊂ 𝒫k(ℂn) 

(m = 0, …, k) are clearly sub-representations. There-
fore, we find that the irreducible decomposition 
(branching law) of 𝒫k(ℂn) under U(n – 1) is given by 

𝒫k(ℂn)|U(n–1) = ⨁𝒫m(ℂn–1)xnk
–m.

Similarly, it is known that the irreducible decomposi-
tion of 𝒫k(ℂn) under G' = O(n) is given by 

𝒫k(ℂn)|O(n) = ⨁ℋk–2m(ℂn)‖x‖2m

(where ‖x‖2 := ∑n
i=1xi

2). As a more non-trivial example, 
we consider the branching law of the representation 
ℋk(ℂn) of G = O(n) under the subgroup G' ≃ O(n – 1). 
For m = 0, 1, …, k, let P̃k

m(y) be a polynomial of degree 

at most k – m satisfying P̃k
m(–y) = (–1)k–mP̃km(y), and 

we consider the linear space

 Wm := {‖x‖k–mP̃km ( xn
‖x‖ )f (x1, …, xn–1)| f (x1, …, xn–1) 

∈ ℋm(ℂn–1)} ⊂ 𝒫k(ℂn).

This is then an irreducible representation of O(n – 1), 
and if we suitably choose P̃km(y), then we can make 
Wm ⊂ ℋk(ℂn). In this situation, ℋk(ℂn) is irreducibly 
decomposed under O(n – 1) as

ℋk(ℂn)|O(n–1) = ⨁Wm ≃ ⨁ℋm(ℂn–1).

The polynomial P̃km(y) is obtained by solving a dif-
ferential equation concerning the Laplacian and 
given explicitly by P̃k

m(y) = C (m–1+n⁄2)(y) using the 
Gegenbauer polynomial Ck

(α)(y). When n = 3, this is 
given by a constant multiple of the associated Legen-
dre polynomials. With these polynomials, we can 
explicitly construct a basis of ℋk(ℂn) inductively on 
n (Fig. 2: n = 3). 

4.   Representations of Lie algebras—Linear 
approximation of those of Lie groups

Lie groups are generally not linear spaces, and it is 
not easy to treat their representations directly. To 
overcome this non-linearity, we consider the Lie 
algebras associated with the Lie groups instead. For X 
∈ M(n, ℂ) (an n × n matrix with complex entries) and 
t ∈ ℝ, we consider the exponential function exp(tX) 
:= ∑∞

j=0(tX)j/j!. This satisfies the usual law of expo-
nents exp((s + t)X) = exp(sX) exp(tX) and d

dt
exp(tX)|t=0 = X. By using this, we define the Lie alge-
bra Lie(G) ⊂ M(n, ℂ) associated with the Lie group G 
⊂ GL(n, ℂ) by

 Lie(G) := {X ∈ M(n, ℂ) | exp(tX) ∈ G holds for 
all t ∈ ℝ}. 

This then becomes a linear space, and [X, Y] := XY –
YX ∈ Lie(G) holds for all X, Y ∈ Lie(G). Next, for a 
finite-dimensional representation (τ, V) of G, we 
define the representation (dτ, V) of the Lie algebra 
Lie(G) by

 dτ(X)v := d
dt  τ(exp(tX))v|t=0   

 
(X ∈ Lie(G), v ∈ V).

Then dτ(aX + bY) = adτ(X) + bdτ(Y) and dτ([X, Y]) = 
dτ(X)dτ(Y) – dτ(Y)dτ(X) hold for all X, Y ∈ Lie(G), a, 
b ∈ ℝ. This representation (dτ, V) preserves most 
information on the original representation (τ, V). For 

k=–∞
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k=1

∞

m=0

k

m=0

[k/2]

m=0

k

m=0
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example, if G is connected, then the irreducibility of 
a finite dimensional representation (τ, V) under G is 
equivalent to the irreducibility of the differential rep-
resentation (dτ, V) under Lie(G). 

Let us consider the representation of G = SU(2) := 
U(2) ∩ SL(2, ℂ) on V = 𝒫k(ℂ2) as an example. First, 
the Lie algebra Lie(G) associated with G = SU(2) and 
its complexification Lie(G) ⊗ ℂ are given by

Lie(G) = 𝔰𝔲(2) := {( a
c    b

–a)│ a, b, c ∈ ℂ,
a = –a̅, b = –c̅ },

Lie(G) ⊗ ℂ = 𝔰𝔩(2, ℂ) := {( a
c    b

–a)│a, b, c ∈ ℂ}.

We take a basis H = (1
0    0

–1 ), E = (0
0    1

0 ), F = ( 0
1    0

0) 

of 𝔰𝔩(2, ℂ). Then their actions on 𝒫k(ℂ2) are given by

dτ(H)f (x, y) = (x ∂
∂x

 – y ∂
∂y ) f (x, y), 

dτ(E)f (x, y) = x ∂
∂y  f (x, y),

dτ(F)f (x, y) = y ∂
∂x

 f (x, y)

(see Fig. 3 for the intermediate process). In particular, 
the actions on the basis {xk, xk–1y, xk–2y2, …, yk} of 
𝒫k(ℂ2) is written as

 dτ(H)xk–jyj = (k – 2j)xk–jyj,  
dτ(E)xk–jyj = jxk–j+1yj–1,  
dτ(F)xk–jyj = (k – j)xk–j–1yj+1.

Fig. 2. Express ℋ𝑘(𝑆2) = ℋ𝑘(ℂ3)|𝑆2 by sum of ℋ𝑚(𝑆1) = ℋ𝑚(ℂ2)|𝑆1.
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Fig. 3.   Representation of Lie algebra of 𝑆𝑈(2) on 𝒫𝑘(ℂ2).
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Hence, dτ(H) has the eigenvalues {k, k – 2, k – 4, …, –k}, 
dτ(E) raises the eigenvalue of an eigenvector of 
dτ(H) by 2, and dτ(F) lowers the eigenvalue by 2. 
This structure is equivalent to those of the spin repre-
sentations appearing in quantum physics. In fact, a 
general irreducible representation of SU(2) always 
has such a structure, especially equivalent to 𝒫k(ℂ2) 
for a non-negative integer k. As a higher example, we 
consider the representations of the Lie group U(n). 
Again, by looking in detail at the action of (the com-
plexification of) the associated Lie algebra for diago-
nal, upper-triangular, and lower-triangular matrices, 
we can then show that the set of all irreducible repre-
sentations of U(n) has a one-to-one correspondence 
with the set of n-tuples of decreasing integers

{(λ1, λ2, …, λn) ∈ ℤn | λ1 ≥ λ2 ≥ ⋯ ≥ λn}.

As we have seen above, representations of Lie alge-
bras are helpful for the classification of representa-
tions of Lie groups. It is also known that the dimen-
sion of each irreducible representation of U(n) is 
characterized by the number of combinatoric objects 
called the semistandard Young tableaux. 

5.   Example of 
infinite-dimensional representations

Next, we consider an example of infinite-dimen-
sional representations. Let us consider the Lie group 
G = SL(2, ℝ). Its Lie algebra is then given by 

Lie(G) = 𝔰𝔩(2, ℝ) := {( a
c    b

–a)│a, b, c ∈ ℝ}.

We take the basis H, E, F ∈ 𝔰𝔩(2, ℝ) as before and 
define the action of 𝔰𝔩(2, ℝ) on (some dense subspace 
of) V = L2(ℝ) by

dτ(H)f  := x 
df
dx

 + 12  f ,     dτ(E)f  = – i
2 x2f , 

dτ(F)f  = – i
2 

d2f
dx2 .

This does not lift to a representation of the Lie group 
SL(2, ℝ) but lifts to that of the double covering group 
SL̃ (2, ℝ) (that is, there exists a representation (τ, 
L2(ℝ)) of SL̃ (2, ℝ), the differential of which coincides 
with the above dτ (on some dense subspace)). The 

action of ( 0
–1    1

0) = exp π
2 (E – F) ∈ SL̃ (2, ℝ) also 

coincides with a constant multiple of the Fourier 
transform.

(τ ( 0
–1    1

0) f )(x) = (τ (exp π2 (E – F))) 
= e

–πi/4

2π  ∫ℝ
f (ξ)e–ixξ dξ.

This is proved by observing the eigenfunctions of 

dτ(E – F) = – i
2 (x2 – d2

dx2 ) (the quantum harmonic 

oscillator). While the representation (τ, L2(ℝ)) is 
infinite-dimensional, this is nearly irreducible*2 and 
called the Weil representation or the metaplectic rep-
resentation. This construction is generalized to the 
representation L2(ℝn) of the larger Lie group Sp(n, ℝ) 
(Sp(1, ℝ) = SL(2, ℝ) for n = 1 case). By taking the 
irreducible decomposition of the representation of 
Sp(nm, ℝ) on L2(ℝnm) ≃ L2(M(n, m; ℝ)) (the function 
space on n × m matrices) under the subgroup Sp(n, ℝ) 
× O(m) ⊂ Sp(nm, ℝ), we can also obtain various rep-
resentations of Sp(n, ℝ); thus, this Weil representa-
tion is considered quite important in representation 
theory. 

6.   Branching law of 
infinite-dimensional representations

In recent research, I was interested in explicitly 
determining the branching laws of infinite-dimen-
sional representations (see [2] and references there-
in). When we restrict a “good” representation (τ, V) of 
G to a subgroup G' ⊂ G, V is decomposed into a direct 
sum (or a direct integral) of (in general infinite num-
ber of) irreducible representations of G'. Even if we 
know which representation V' of G' appears abstractly 
in the decomposition of V, it is generally a difficult 
problem to determine how V' is included explicitly in 
V (corresponding to the determination of P̃k

m(y) in the 
example of ℋk(ℂn)). I determined the explicit inclu-
sion map (intertwining operator) from V' into V for 
“good” tuples (G, G', V, V') [3, 4] (Fig. 4). There then 
appear special functions such as hypergeometric 
functions (and their multivariate generalizations). In 
the future, I aim to obtain analogous results for more 
general tuples (G, G', V, V').

*2 The space of all even or odd functions is irreducible, and L2(ℝ) is 
a sum of these two irreducible representations.
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1.   History of modular forms and 
remaining problems

One of the origins of modular forms*1 is the study 
of elliptic functions that began in the 1800s when the 
accuracy of stargazing methods became more precise 
and astronomy improved rapidly. Since orbits of 
astronomical objects are generally ellipses, we need 
to measure the circumference of ellipses. Of course, 
it is easy to compute the circle’s circumference in 
terms of π, but with ellipses, it is challenging and 
written as the (second) elliptic integral. Through the 
studies of Legendre, Gauss, and Abel, elliptic inte-

grals became not only the circumference of ellipses 
but also interesting objects connecting to modern 
mathematics. A notable example is the theta function. 
Theta functions are used in various areas of mathe-
matics (Fig. 1). They are typical examples of modular 
forms, a central theme of this article, and play crucial 
roles in elliptic curves and number theory. As another 
application, Kronecker constructed class fields of 
imaginary quadratic fields. This study is called Kro-
necker’s Jugendtraum and is a significant result relat-
ing to a part of Hilbert’s 23rd problem*2. The study of 
modular forms started in this way with typical exam-
ples.

1.1    Developments of the theory of modular forms 
and obstructions

To further developments in the theory of modular 
forms, we needed to wait for the study of modular 
forms of Hecke, a student of Hilbert. Of course, there 
are many known results for modular forms, but 
Hecke arranged such results and initiated the theory 

Modular Forms and Fourier 
Expansion
Shuji Horinaga
Abstract

Fourier analysis is an indispensable technology, but so is mathematics. In this article, we review the 
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*1 Modular forms: Functions with quite strong automorphy. Due to 
the automorphy, it is highly nontrivial that modular forms exist. 
The modular forms we define below have several deep and inter-
esting arithmetic properties.

*2 Hilbert’s 23rd problem: German mathematician David Hilbert 
proposed 23 problems in 1900. These problems played a huge 
role in constructing the basics of modern mathematics. Although 
it has been more than 100 years since Hilbert’s proposal, up to 
half the problems have been proved.

Fig. 1.    The study on the circumference of ellipses reveals 
important interrelated concepts and objects in 
modern mathematics.
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of modular forms. Hecke defined the zeta functions 
and L functions for modular forms on the basis of the 
Riemann zeta function. These results opened the way 
for the theory of modern modular forms. This theory 
became the theory of automorphic representations 
through the works of Langlands and other mathema-
ticians. To review the theory of automorphic repre-
sentations, the Shimura–Taniyama conjecture is one 
of the most significant results. It is a profound conjec-
ture that connects automorphic representations and 
elliptic curves. In 1995, Wiles solved the “semi-
stable” case of the conjecture, proving Fermat’s con-
jecture completely. The Shimura–Taniyama conjec-
ture has now been completely proven. The paramod-
ular conjecture, a generalization of the Shimura–
Taniyama conjecture, has been partially proved. To 
formulate these conjectures, it is necessary to use 
automorphic representations, which also play a vital 
role in these conjectures.

We stated that the Shimura–Taniyama conjecture 
connects geometric objects, such as elliptic curves, 
and analytic objects such as holomorphic modular 
forms. Through the pioneering studies of many 
researchers, for example, Shimura and Langlands, 
the Shimura–Taniyama conjecture exceeds the origi-
nal formulation and became a theory to unify algebra, 
analysis, and geometry (Fig. 2). However, there is a 
remaining problem in the theory of modular forms, 
i.e., a study of non-holomorphic modular forms. 
Shimura and Taniyama formulated the conjecture on 
the basis of many numerical computations of Fourier 
coefficients of modular forms. However, no known 
examples of Fourier coefficients of non-holomorphic 
modular forms exist. The lack of such examples is an 
obstruction of further development. Recall that we 
prove the Shimura–Taniyama conjecture and hyper-
sphere packing problem*3 using holomorphic modu-

lar forms. It is easy to imagine that non-holomorphic 
modular forms have several applications similar to 
holomorphic modular forms, but there is room for 
improvement in modular forms. In this article, we 
first discuss the relationship between Fourier expan-
sion and representation theory then discuss the Lang-
lands conjecture and Arthur conjecture, which may 
be viewed as a generalization of the relationship, and 
introduce a joint study with myself and Narita, a pro-
fessor of Waseda University, about Fourier expansion 
of non-holomorphic modular forms. 

2.   Fourier expansion and representation theory

2.1   Fourier expansion
Many people may have heard of Fourier expansion 

and Fourier transform. These are indispensable tech-
niques for modern society; for example, they are fre-
quently used to process sound signals. No matter how 
complicated sounds are, we may construct complex 
sounds using simple ones such as the time signals on 
television and radio. This point of view is the method 
of Fourier transform and Fourier expansion. In math-
ematics, one may regard such simple sounds as sin x 
and cos x functions. In pure mathematics, Fourier 
expansion means an expansion of periodic functions 
as sin x and cos x, and Fourier coefficients are the 
coefficients in such an expansion. Fourier expansion 
plays a significant technical and theoretical role in 
modern mathematics. We first discuss the relation-
ship between Fourier analysis and representation 
theory.

The philosophy of Fourier expansion and Fourier 

Fig. 2.   Modular forms, zeta and L functions, geometric objects.
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*3 Hypersphere packing problem: An analog of the ball-packing 
problem in 3 dimensions, known as the Kepler conjecture. Vi-
azovska solved the problem for 8 and 24 dimensions and won the 
Fields medal in 2022.
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transform is to understand the space of periodic func-
tions via the translations for periodic functions. To 
understand this, we discuss the mathematical details. 
Let f be a complex-valued function on the space of 
real numbers ℝ. We say that f has the period 1 if f(x + 
1) = f(x) for any x ∈ ℝ. Thus, we may regard f as a 
function on ℝ/ℤ. The theory of Fourier expansion 
tells us to rewrite f as a sum of sin x and cos x. More 
precisely, by e2π –1 ny = cos(2πnx) + –1 sin(2πnx), 
we have an infinite sum

f(x) =  ∑ ane2π –1 ny.

Such an expression is called Fourier expansion, and 
coefficients an are the Fourier coefficients. It is 
known that an equal Ff(n), where Ff is the Fourier 
transform.

In representation theory, we divide mathematical 
objects, such as periodic functions, into smaller 
objects with more precise conditions such as periodic 
functions. A typical example of representation theory 
is the action of matrices on vector spaces. We can eas-
ily understand the action of matrices by dividing 
them into eigenvalues and eigenvectors. Such a 
framework is one fundamental aspect of representa-
tion theory.

Next, we discuss the relationship between Fourier 
analysis and representation theory. In the above rep-
resentation theoretical method, we consider the vec-
tor spaces and the matrices acting on them as the 
space of periodic functions and the “translation,” 
respectively. For a periodic function f and real num-
ber y ∈ ℝ, we define the translation ry by ryf(x) = f(x 
+ y). Then, the n-th Fourier coefficient of ryf equals 
ane2π –1 ny. Therefore, the action defined by the 
translation ry by y has the function x ↦ e2π –1 ny as an 
eigenfunction and e2π –1 ny as the eigenvalue of it. 
Summarizing thus far, by combining the period func-
tion, Fourier transform, and the translation, we con-
clude that the following two objects relate:

•  Representations on ℝ/ℤ defined by y ↦ e2π –1 ny

•  n-th term of Fourier expansion of period func-
tions

We thus grasp one face of representation theory by 
connecting a function and representations, a mysteri-
ous object. We may find this a surprising correspon-
dence in a broad framework rather than an easy object 
ℝ/ℤ. The central theme of the next section is a gen-
eralization of such surprising correspondence.

2.2    From Fourier analysis to Langlands conjecture
We deeply observe the relationship between func-

tions and representations for ℝ/ℤ and period func-
tions. A fundamental property is the “compactness” 
of ℝ/ℤ. For a non-compact object such as the real 
numbers ℝ, such correspondence becomes more dif-
ficult due to technical difficulties, for example, a 
convergence of integrals. We may find differences 
between Fourier analysis of period functions and a 
function on ℝ in certain literature on Fourier analysis. 
The nature of these differences comes from the topo-
logical property of ℝ and ℝ/ℤ, i.e., the non-compact-
ness of ℝ.

Harish-Chandra produced a breakthrough in the 
representation theory of reductive groups, one of the 
most essential classes of non-compact groups. He 
mainly considered the Lie groups, containing ℝ and 
ℝ/ℤ. His pioneering work is the classification of dis-
crete series representations. Recall that we consider 
the space of functions for ℝ and ℝ/ℤ. For reductive 
groups G, he considered the space L2(G) of square-
integrable functions*4 and translations on it. We may 
naturally find discrete series representations in L2(G). 
A realization of discrete series representations on 
L2(G) is done by matrix coefficients*5. Like this, we 
highly develop the representation theory through a 
space of certain functions and analysis. On the basis 
of Harish-Chandra’s study, Knapp and Zuckerman 
classified the tempered representations, and Lang-
lands classified all the irreducible representations of 
Lie groups (Table 1). This classification is due to 
Langlands and is called the Langlands classification. 
Since Lie groups are a theory for ℝ or complex num-
bers ℂ, number theorists need a similar theory for 
p-adic groups.

On the basis of various trials and errors, the local 
Langlands conjecture, the classification theory of 
irreducible representations on p-adic groups, was 
becoming clear. The local Langlands conjecture 
states the correspondence of the following two 
objects for a connected reductive group G*6:

 {Irreducible representations of G} → {L 
parameters of G}.

n=–∞

+∞

*4 Square-integrable function: A function f on G such that ∫G |f(g)|2 dg 
< +∞.

*5 Matrix coefficients: A representation ρ is a homomorphism ρ of a 
group to the group of matrices, possibly infinitely columns and 
rows. An entry of a matrix in the image of ρ is called the matrix 
coefficient.

*6 Connected reductive group: For an algebraic group, we mean a 
group and algebraic variety. Connected is the connectedness as 
an algebraic variety, and reductive is a class of groups. For ex-
ample, general linear, orthogonal, and unitary groups are con-
nected reductive groups, but upper unipotent groups are not re-
ductive.
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L parameters on the right side are arithmetic objects 
and define an L function.

As in another article [1] in this issue, one aspect of 
the local Langlands conjecture is a non-commutative 
class field theory. Such an aspect appears in the L 
parameters. The local Langlands conjecture has made 
significant progress and become more precise. It is 
now called the endoscopic classification.

The representation theory of p-adic groups and 
modular forms or automorphic representations are 
inseparable. They have a history of developing 
together while compensating for each other’s weak-
nesses. Finally, we discuss the author’s results for the 
Fourier expansion of non-holomorphic modular 
forms.

3.   Modular forms and representation theory

3.1    Fourier expansion of holomorphic modular 
forms

We first consider the Fourier expansion and coef-
ficients of holomorphic modular forms. Let ℌ be the 
upper half plane*7 and SL2(ℝ) be the special linear 
group of degree two*8. The group SL2(ℝ) acts on ℌ by 
the linear fractional transformation*9. Let Γ = SL2(ℤ) 
be the subgroup of SL2(ℝ) with integer entries. Set j 
to be the factor of automorphy*10. Take an integer k 
and holomorphic function f on ℌ. We say that f is a 
modular form*11 of weight k with respect to Γ if 
f (γ(z)) = j(γ, z)k f(z) for any z ∈ ℌ and γ ∈ Γ. Thus, 
modular forms are not entirely invariant under Γ 
other than k = 0 but is invariant under Γ with certain 
modified factors due to k and j. In particular, one 
would obtain f(z + 1) = f(z) for a modular form f. 
Since f is holomorphic, one obtains the following 
Fourier expansion by Cauchy’s integral formula:

f(x + –1y) =  ∑ ane2π –1 n(x+ –1 y).

Surprisingly, an are independent of the imaginary part 
y under this expression. This expression is usually 

called the Fourier expansion of f, and an are called the 
Fourier coefficients of f.

3.2   Modular forms and representation theory
We observed a strong relationship between transla-

tions on function spaces and representation theory. 
Similar phenomena may occur for modular forms. 
More precisely, we may lift modular forms to func-
tions on a Lie group. Let φf be the lift of f. We then 
may regard φf as a function on C∞(Γ∖SL2(ℝ)). As we 
have seen in the section discussing the Fourier expan-
sion, one can define the right translation by SL2(ℝ) on 
the space Γ∖SL2(ℝ). Thus, modular forms and repre-
sentation theory of SL2(ℝ) relate. With a similar 
method, modular forms would become a function φf 
on an adele group SL2(𝔸) using the adele ring 𝔸 of ℚ. 
If f is square-integrable or more strongly f is a cusp 
form, φf is a function on L2(SL2(ℚ)∖SL2(𝔸)). We 
summarize that from a square-integrable modular 
form f, the function φf becomes a function on 
L2(SL2(ℚ)∖SL2(𝔸)) and relates representations of 
SL2(ℝ) and SL2(ℚp). This phenomenon resembles 
Fourier analysis and representation theory (Fig. 3).

In the modern modular form theory, we generalize 
SL2 in L2(SL2(ℚ)∖SL2(𝔸)) to a connected reductive 
group. Like Harish-Chandra’s study on discrete 
series, we may consider the discrete spectrum of 
L2(SL2(ℚ)∖SL2(𝔸)). A recent study gives us a descrip-
tion of such a discrete spectrum. This study is based on 
the research of many researchers. Arthur, a student of 

n=–∞

+∞

Table 1.   Classification and construction of representations.

Classification
Properties of matrix

coefficients
Construction

Discrete series Harish-Chandra Square-integrable Realization on L2 space via matrix coefficients 

Tempered representations Knapp–Zuckerman Tempered Parabolically induced representation

Unitary representations Unknown Definable Unknown in general

Irreducible representations Langlands Non-definable Langlands quotient of parabolically induced 
representations

*7 Upper half plane: The set of complex numbers with positive 
imaginary part.

*8 Special linear group of degree two: The group of invertible real 2 
× 2 matrices with determinant one.

*9 Linear fractional transformation:
 (a

c    b
d) (z) = az + b

cz + d ,    (a
c    b

d) ∈ SL2(ℝ)

*10 Factor of automorphy: For z ∈ ℌ and γ = (a
c    b

d) ∈ SL2(ℝ), we 
put j(γ, z) = cz + d.

*11 Strictly speaking, this definition states that the function is a weak 
modular form. For a weak modular form f, we say that f is a 
modular form if the Fourier coefficient an defined below is zero 
for n < 0.
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Langlands, established the Arthur conjecture, which 
describes the discrete spectrum and proves his con-
jecture for orthogonal and symplectic groups under 
appropriate modification. This study is one of the 
highest peaks in modern theory of modular forms. 
Many researchers now consider generalizations and 
applications of Arthur’s study.

3.3    Toward the generalization of Fourier expan-
sion of modular forms

We saw that the Fourier coefficients of holomor-
phic modular forms f are constant. This fact is based 
on the holomorphy of f. Thus, if we remove the holo-
morphy assumption, the Fourier expansion of f is 
expressed as

f(x + –1y) =  ∑ an(y)e2π –1 n(x+ –1 y).

The coefficients an(y) depend on the imaginary part 
y. Therefore, it is not easy to consider an(y). In the 
joint study with Narita [2], we treat such Fourier 
expansion of non-holomorphic modular forms. A 
typical example of a non-holomorphic modular form 
is a Maass form, but we do not treat Maass forms. Our 
main target is a modular form naturally arising from 
representation theory*12. Discrete series representa-
tions are a key idea in our joint study. We recall Har-
ish-Chandra’s classification of discrete series repre-
sentations to understand the idea. The modular form 
on the upper half plane corresponds to a function on 
SL2(ℝ). In a certain sense, there is essentially only 
one discrete series representation of SL2(ℝ). One of 
the difficulties of Maass form is that the correspond-
ing representation is not a discrete series representa-
tion. An example of a group with non-holomorphic 
discrete series representations is the symplectic group 
Sp4(ℝ) of degree two. For Sp4(ℝ), there are essen-
tially two discrete series representations in a certain 

sense. One is holomorphic and the other one is non-
holomorphic. Also, Sp4(ℝ) is a minimal with such a 
property. We may define a modular form on Sp4(ℝ). 
Such a modular form is a function on the Siegel upper 
half plane ℌ2 of degree two*13 satisfying the Fourier 
expansion:

f(x + –1y) =           ∑           ah(y)e2π –1 tr(hx),  

x + –1y ∈ ℌ2.

The ah(y) are called the generalized Whittaker func-
tion. Unlike holomorphic modular forms, ah(y) are 
never a constant. We can introduce a differential 
equation to evaluate ah(y) when considering the dis-
crete series representations. In our joint study, we 
explicitly compute the solution of the differential 
equation and prove several properties of ah(y). As an 
application, we explicitly describe the space of all the 
non-cuspidal automorphic forms, generating discrete 
series representations of Sp4(ℝ). As in Fig. 4, this 
joint study is the first to describe all the non-cuspidal 
modular forms, including their construction. In our 
next joint study, we will consider an explicit compu-
tation of Fourier coefficients. We will extend our 
research to provide an arithmetic property of L func-
tion through explicit computation of modular forms 
corresponding to discrete series representations.

n=–∞

+∞

h∈Mat2(ℚ), th=h

Fig. 3.   Comparison of local and global.

translation

Discrete part L2disc(G)

Discrete series of G

translation

Discrete part L2disc(G(�))

Function space L2(G) Adele group G(�) Function space L2(G(�))

Square integrable automorphic forms on G(�)

Construction
is difficult

Matrix
coefficients

Lie group G

*12 Modular forms are, of course, related to a function on groups. If 
a modular form relates to a representation σ, we say that a modu-
lar form generates σ.

*13 Siegel upper half plane ℌ2 of degree two:
 ℌ2 = {z ∈ (a

b    b
c ) ∈ Mat2(ℂ) | Im(z) is positive definite.} 
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1.   Introduction

The historical origin of mathematics was the pro-
cess of counting. Two fundamental results of early 
mathematics, believed to be discovered at the Pythag-
orean school and documented by Euclid around 2500 
years ago, are 1) the number of prime numbers is 
infinite, and 2) any natural number can be uniquely 
factorized into prime factors. One of the most fasci-
nating aspects of number theory is the stark contrast 
between the simplicity of the integers and the com-
plex and seemingly irregular distribution of prime 
numbers. The distribution of prime numbers is still a 
subject of research and takes a concrete form in the 
Riemann hypothesis, the most well-known open 
problem in mathematics, still unsolved after 165 
years.

In the modern world, the development of quantum 
information technologies requires the understanding 
and control of light and matter interactions. The most 
fundamental theoretical model of this type of quan-
tum interaction is the quantum Rabi model (QRM) 
[1]. In applications, the systems are always subject to 
the passing of time, so it is fundamental to understand 
the time evolution of the system, mathematically 
controlled by the partition function and heat kernel of 
the system. Informally speaking, the essence of the 
partition function is to allow the discernment of prop-
erties of ensembles of particles (macro level) having 

independent states (micro level). More concretely, 
the partition function is defined as the sum of certain 
weighted values depending on all the possible states 
of the system.

Similarly, the Riemann zeta function is also defined 
as the product of geometric series defined for all 
prime numbers, each prime number existing indepen-
dently from the others. The Riemann zeta function 
enables us to perfectly understand the distribution of 
the prime numbers, impossible only looking at the 
individual prime numbers, in the Riemann hypothe-
sis. Surprisingly, physics and number theory share a 
similar philosophy, and the connections do not end 
here. For instance, the partition function of the quan-
tum harmonic oscillator and Riemann zeta function 
are explicitly connected. It is generally equivalent to 
consider the partition function and the spectral zeta 
function (the Dirichlet series associated with the 
eigenvalues) of a quantized physical system. The 
mathematical theory that bridges the two worlds is 
representation theory, historically developed along-
side relativity theory and quantum mechanics.

In this article, we give an overview of the theory of 
the partition function and spectral zeta function of 
quantum interaction models with the hope that the 
reader will discover and appreciate the bonds 
between quantum physics and number theory. Here-
after, we denote the ring of integers, field of rational 
numbers, field of real numbers, and field of complex 
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numbers as ℤ, ℚ, ℝ, and ℂ, respectively.

2.   Special values of the Riemann zeta function 
and automorphic forms

The harmonic series, the sum of the reciprocals of 
all positive integers, was known to diverge since the 
Middle Ages, with an ingenious proof by Nicole 
Oresme in the 14th century. What about the sum of 
the reciprocal of the squares? This question, later 
known as the Basel*1 problem, was posed by the 
Bolognese mathematician Pietro Mengoli in 1644. 
The problem remained unsolved for almost 90 years, 
until Leonhard Euler discovered in 1735 that it con-
verges to the exact value π2

6
. At the time, it was a 

surprise that the irrational number π appeared in the 
answer.

These results on the harmonic series may be written 
as ζ(1) = +∞, and ζ(2) = π2

6
, where ζ(s) is the Riemann 

zeta function (called Riemann zeta), defined by

ζ(s) := ∑ 1
ns  =           ∏            1

1 – p–s .

The middle equality connecting the series and the 
Euler product manifest the fact that any integer can be 
factored uniquely into prime factors. The domain of 
absolute convergence of the series and the infinite 
product is the half-plane ℜ(s) > 1, and it is known that 
the Riemann zeta ζ(s) can be extended analytically 
into a meromorphic function defined in the whole 
complex plane with a unique simple pole*2 at s = 1. 
Euler solved the Basel problem by comparing infinite 
product expansion of sin(πx) with the Taylor series of 
second order and discovered that the values of the 
zeta function ζ(2n) at the even integers are given by

ζ(2n) = 
(–1)n+1(2π)2n B2n

2(2n)! ,

where Bn are the Bernoulli numbers defined by the 
generating series x

ex – 1  =: ∑∞
n=0 

Bn
n!  x

n.
In contrast, the passing of time has not illuminated 

the question of irrationality (or rationality) of the 
special values at odd integers. The first nontrivial odd 
value, ζ(3), had to wait until 1979 to be shown to be 
irrational by Apéry [2]. Apéry defined mysterious 
sequences of numbers, now called Apéry numbers, 
and used them in an inventive way to prove that ζ(2) 
and ζ(3) are irrational numbers.

Even today, not much else is known about the prop-
erties of the remaining odd special values. At the turn 
of the 21st century, Rivoal proved that the sequence 
ζ(2n + 1)(n = 2, 3, …) contains infinite number of 

irrational numbers, and that there is at least one irra-
tional among the numbers ζ(5), ζ(7), ζ(9), …, ζ(21). 
Shortly after, in 2001 Zudilin improved the result to 
show that the numbers ζ(5), ζ(7), ζ(9), ζ(11) contain 
at least one irrational. This is the present state of 
knowledge about this question, at least here on planet 
Earth.

2.1   The prime number theorem
The prime number theorem, a result describing the 

distribution of prime numbers, was conjectured by 
Carl Friedrich Gauss and Adrien-Marie Legendre in 
the 18th century and proved independently by 
Charles de la Vallé Poussin and Jacques Hadamard in 
1896 using the ideas introduced by Bernhard Rie-
mann in his seminal work in number theory.

If π(x) is the function describing the number of 
primes less than x(> 0), then the prime number theo-
rem is precisely stated as

π(x) ∼ Li(x) := ∫2

x
 dy
ln(y)  ∼ x

lnx.

Here, f(x)∼g(x) means that the limit f(x)/g(x) → 1 
holds as x → ∞. At the heart of the proof is Riemann’s 
idea that ζ(s) ≠ 0 for ℜ(s) = 1.

The revolutionary contribution of Riemann of rec-
ognizing that the seemingly random distribution of 
prime numbers is intimately related to the analytical 
properties of ζ(s) may even be a greater achievement 
that a future proof of the Riemann hypothesis itself.

2.2    Functional equation of the Riemann zeta 
function

One of the main features of ζ(s) is the functional 
equation. Let Γ(s) be the gamma function, and set  
ζ̃(s) := π–s/2Γ(s/2)ζ(s), then the functional equation is

ζ̃(1 – s) = ζ̃(s).

The essential idea of the functional equation was dis-
covered by Euler in its computations aimed to assign 
values to divergent series, including

‘‘1 + 8 + 27 + 64 + 127 + ⋯’’ = 1
120, etc.

The computational results obtained by Euler are cor-
rect even though the concept of analytical continua-
tion (or even complex function theory) did not exist 
at the time.

Let us give an outline of the proof of the functional 
equation to introduce some of the ideas used later for 

n=1

∞

p=2,3,5,7,... (primes)

ℤℚℝℂℍℕℙ   ℜℳ

*1 Basel is the birthplace of Leonhard Euler (1707–1783).
*2 We might regard a pole as a situation similar to when the denom-

inator of a fraction becomes 0.
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the partition function. To avoid technical complications, 
we assume that all series and integrals converge and 
behave in a reasonable manner.

The Mellin transform ℳf of a function f is defined 
by

ℳf(s) := ∫0

∞
 f(t)ts–1 dt.

A fundamental example is given by f(t) = e–nt with t 
> 0 with Mellin transform ℳf(s) = n–sΓ(s), verified 
directly from the definition of Γ(s). Similarly, for a 
series g(z) = ∑∞

n=0 an zn, the Mellin transform of h(t) 
= g(e–t) is easily verified to be ∑∞

n=0 an n–s = Γ(s)–1 
ℳh(s). The main point to note here is that the Mellin 
transform relates the series of exponential with the 
Dirichlet series.

Let us define the series θ(z) in the upper-half com-
plex plane ℍ := {z ∈ ℂ 𝔍(s) > 0} as

θ(z) := ∑ eiπn2z.

From the foregoing discussion, we verify that by set-
ting h(t) = 1

2 θ(it), we obtain ζ̃(s) = ℳf(s/2). The 
function θ(t) is an automorphic form called the 
Jacobi theta function.

Automorphic functions (resp. forms) are functions 
that are invariant (resp. almost invariant) under cer-
tain actions of non-commutative groups. Trigonomet-
ric functions are well-known to be invariant under 
translations (i.e. are periodic functions), in other 
words, they are invariant under the action of the abe-
lian group ℤ. Thus, in this sense automorphic func-
tions may be thought as non-commutative versions of 
trigonometric functions.

For z ∈ ℍ, in addition to the translation invariance 
θ(z + 2) = θ(z), the theta function satisfies the relation 
θ(–1/z) = –izθ(z). If f ̂ is the Fourier transform of a 
function f, then by the Poisson summation formula

 ∑ f ̂ (m) = ∑ f (n)

and replacing by the rapidly decreasing function ft(x) 
= e–πtx2, we obtain the desired relation. Finally, for z 
= it (t > 0), we obtain 1

t  θ( i
t ) = θ(it) and applying the 

Mellin transform to both sides we obtain the func-
tional equation for ζ̃(s).

Let us give an interpretation of the Poisson summa-
tion used above. Similar to the idea of the hands on a 
clock*3, we consider two real numbers to be equiva-
lent if they have the same fractional part and write 
this set as ℤ∖ℝ. With this in mind, the right side of the 
Poisson summation formula is the sum over the 
lengths of a circumference (i.e., number of turns), and 

the left side is the sum over the irreducible represen-
tations that appear in the Fourier transform, that is, 
representations x ↦ e2πiyx of the abelian group ℝ that 
are trivial on ℤ. In other words, we might think of it 
as a sum over all y = m ∈ ℤ. The left side may also be 
interpreted as the sum over the eigenvalues of the 
Laplacian Δ = – d2

dx2 of ℝ. The extension of this idea for 
non-commutative groups is the celebrated Selberg 
trace formula*4.

2.3   Modular and automorphic forms
Let SL2(ℤ) (respectively SL2(ℝ)), be the group of 2 

× 2 matrices with integer (respectively real) entries 
and determinant 1. The group SL2(ℤ) is generated*5 

by matrices

S = (0
1    –1

0 ),     T =  ( 1
0    1

1 ).
Now, g = ( a

c    b
a ) acts on the upper half-plane by the 

linear fractional transformation z ↦ g. z := az+b
cz+d for z 

∈ ℍ. This action preserves the Poincaré (hyperbolic) 
metric on ℍ induced by y–2 dxdy. Since the matrices 
±1 (1 is the identity matrix) define the same action, 
we consider the (projective) modular group Γ = 
PSL2(ℤ) := SL2(ℤ)/±1 and the space Γ∖ℍ of points of 
ℍ that are not equivalent under the action of Γ.

This is the type of stage where automorphic forms 
(modular forms) reside. Note that in this case we do 
not make a distinction between ±1. The theta func-
tion θ(z) above, is almost invariant under the action 
of the subgroup Γ(2) (≅ Γ0(4)) of SL2(ℤ) generated by 
S and T2, and is therefore called a Γ(2)-automorphic 
form.

3.   Quantum interaction models

3.1   QRM
In quantum optics, the QRM is the most fundamen-

tal model to describe light-matter interaction. Its 
Hamiltonian is given by

HRabi := a†a + Δσz + gσx(a† + a).

Here, a† = 1
2  (x – d

dx), a = 1
2  (x + d

dx) are the creation 
and annihilation operators for the quantum harmonic 

n∈ℤ

m∈ℤ n∈ℤ

*3 For instance, adding 8 hours at 20:00 (8 PM), we have 4:00 (4 
AM) of the next day and not 28:00 hours of the same day, and 
similarly with minutes.

*4 For commutative groups, the degree of irreducible representa-
tions on a complex vector space is always 1, and the trace (or 
index) of the representation is the representation itself.

*5 In other words, any matrix in SL2(ℤ) is written as a finite product 
of S and T.
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oscillator (bosonic mode, photon or “light”) with 
angular frequency ω(= 1), the matrices

σx = (0
1    1

0), σz =  (1
0    0

–1 )
are the Pauli matrices for a two-level system (particle, 
qubit or “matter”), g > 0 is the coupling strength 
between the two-level system and the photon, and 2Δ 
> 0 is the energy difference between the levels of the 
two-level system. We may assume that the Hamilto-
nian HRabi acts on the Hilbert space L2(ℝ) ⊗ ℂ2 of 
integrable two-dimensional vector-valued functions.

The addition of a bias term to the Hamiltonian HRabi 
results in the model Hϵ

Rabi := HRabi + ϵσx (ϵ ∈ ℝ), called 
the asymmetric quantum Rabi model (AQRM). The 
AQRM appears naturally in the experimental realiza-
tion of deep strong coupling accomplished using the 
theory of cavity quantum electrodynamics [3].

3.2   Non-commutative harmonic oscillator
The non-commutative harmonic oscillator (NCHO) 

[4, 5] is defined as a system of ordinary differential 
equations having a Hamiltonian

Q := (α    β ) (– 1
2

d2

dx2  + 12 x2) 
+ (1    –1 ) (x d

dx  + 1
2 )     (α, β ∈ ℝ)

acting on L2(ℝ) ⊗ ℂ2. When the parameters α, β > 0 

satisfy αβ > 1, Q is a self-adjoint operator having only 
the discrete spectrum (0 <)λ0 ≤ λ1 ≤ ⋯ ≤ λn ≤ ⋯ ↑ ∞ 
with multiplicity of at most 2.

The spectral zeta function ζQ(s) of the NCHO is 
given by

ζQ(s) := ∑ λn
–s     (ℜs > 1).

Note that when α = β, Q is unitarily equivalent to a 
couple of harmonic oscillators; thus, ζQ(s) = 2 α2 – 1 
ζ(s). The spectral zeta function ζQ(s) has many inter-
esting and fascinating properties. For instance, ζQ(s) 
can be analytically continued to the complex plane 
with a unique simple pole at s = 1 and similarly to ζ(s), 
ζQ(s) has “trivial zeros” at negative even integers [6].

It is also possible to define analogs of the Apéry 
numbers from the special values ζQ(2), ζQ(3), ζQ(4) 
that unveil a rich mathematical structure. For 
instance, for ζQ(2), there are explicit relations with 
automorphic forms and elliptic curves (Table 1). For 
ζQ(4), one has to venture beyond the usual modular 
forms and consider natural extensions of Eichler 
forms (given by generalized Abel integrals) [7] asso-
ciated with a new cohomology [8, 9]. In the explicit 
description of the Apéry-like numbers one also 
encounters integrals of generalized Eisenstein series 
[10], deeply related to the research started by Shimura 

n=0

∞

Spectral zeta function of NCHO Riemann zeta function

ζQ(2) ζQ(3) ζQ(n) ζ(2) ζ(3) ζ(2n) ζ(2n + 1)

Special values
(positive integers)

Elliptic integrals
(Hypergeometric)

Integral of
algebraic
functions

Sums of
integrals of
algebraic
functions

Irrational
Benoulli
number

× π2n
Unknown

Geometric period

Picard-Fuchs 
ODE of family of 

elliptic curves 
with Γ(2)-torsion 

? ?

Picard-Fuchs 
ODE of family of 

elliptic curves with 
Γ1(5)-torsion

Picard-Fuchs 
ODE of 

K3-surfaces

Not
considered

Not
considered

Apéry(-like) numbers Defined from a
part of anomaly Undefined Undefined

i) Binomial expression Undefined Undefined

ii) p-ary congruence 
relation Undefined Undefined

iii) Hierarchy of 
recurrence relations Unknown

iv) Modular interpretation 
of generating functions

Γ(2)-modular 
forms

? Eichler forms for 
n = 4 Γ1(5)-modular forms

v) Metagenerating 
functions Modular Mahler Measure expression Unknown

Special values
(negative integers)

0
NC Bernoulli number

0
Bernoulli number

(−2n)
(−(2n + 1))

(−2n)
(−(2n + 1))

π2

6

Table 1.   Number-theoretical properties of the spectral zeta function.
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in 1982 on holomorphic modular forms for one vari-
able [11].

3.3   Covering models
One of the motivations for the introduction of the 

NCHO was to slightly weaken the symmetries 
imposed on the quantum harmonic oscillator to rise 
above the Gauss hypergeometric functions appearing 
in classic representation theory and to consider the 
resulting spectral zeta function as an extension of 
ζ(s).

In practice, by using representation theory, we can 
see that the eigenvalue problem of the NCHO does 
goes beyond the Gaussian hypergeometric differen-
tial equations*6 and corresponds to the existence of 
holomorphic solutions of a Heun ordinary differential 
equation (ODE), with four singular points {0, 1, αβ, 
∞}, in a region containing {0, 1} but not αβ [12, 13]. 
By joining the singular point αβ and ∞ via a conflu-
ence process, we obtain a confluent Heun ODE, 
which corresponds directly to the eigenvalue problem 
of the QRM. 

We may thus say that the NCHO is a covering 
model of the QRM by looking at the corresponding 
Heun ODE pictures [13]. The same covering relation 
holds for the η-NCHO, a shifted version of the 
NCHO and AQRM [14]. It was discovered [15] that 
the eigenvalue problem of the NCHO gives rise to a 
long-established physical model called the two-pho-
ton quantum Rabi model (tpQRM) [16]. This shows 
that the interaction between one photon and a two-
level atom (QRM) can be obtained from that between 
two photons and a two-level atom (tpQRM) via the 
covering relation. It would be interesting to confirm 
the mathematical concept of covering between these 
physical models through actual experiments. It is also 
worth remarking that in a previous study [15], using 
representation theory, the covering relation takes a 
simpler and clearer form. Further exploring the 
physical and number theoretical implications of the 
covering relations is one of the promising research 
directions in this area.

3.4   Partition function and spectral zeta functions
In this section, we consider a quantum system with 

self-adjoint Hamiltonian H. As mentioned in the 
introduction, we are interested in knowing the action 
of the unitary operator exp(–itH) (propagator/heat 
kernel) and its trace, the partition function ZH(β) of H. 
The partition function is defined as the sum of the 
Boltzmann factors exp(–βE(μ)), where E(μ) is the 
energy (eigenvalue) of the state μ, that is, it is given 

by

ZH(β) := Tr[exp(–tH)] = ∑ exp (–βE(μ)),

where Ω is the set of all possible eigenstates of H. The 
partition function is one of the fundamental tools of 
statistical mechanics for the study of entropy and 
other properties of a system in thermodynamical 
equilibrium. 

On the other hand, the spectral zeta function ζH(s) is 
defined as the Dirichlet series determined by the 
eigenvalue sequence E(μ). We assume for simplici-
ty*7 that E(μ) ≠ 0. Concretely, ζH(s) is given by

ζH(s) := ∑ E(μ)–s     (ℜ(s) ≫ 1).

Therefore, by the definition of Γ(s), the two functions 
are connected via the Mellin transform

ζH(s) = 1
Γ(s)  ∫0

∞
 ts–1 ZH(t)e–tτ dt.

It is important to mention that the long awaited 
explicit formulas of the heat kernel and partition 
function of the QRM and AQRM were finally 
obtained [17–19]. The technique for the computation 
is based on the Trotter–Kato product formula, regard-
ed as the mathematical formulation of the Feynman 
path integral, multivariate Gaussian integrals and the 
Fourier transform in 𝔽2

n (n = 1, 2, ...) interpreted as a 
Weyl representation of SL2(𝔽2), where 𝔽2 denotes the 
field with 2 elements. The series expression for the 
heat kernel corresponds to the sum of irreducible 
representations of the decomposition of the action of 
the infinite symmetric group 𝔖∞ over 𝔽2

∞, and each 
summand is an orbital integral of 𝔖∞. This is a sur-
prising discovery that gives further hints on the com-
putation of the heat kernel for more general models, 
and in general to the structure of interaction models.

The partition function also provides a short proof of 
the analytic continuation of the corresponding spectral 
zeta function using a path integral expression going 
from infinity to the origin, then circling the origin and 
back to infinity*8, and extensions of Bernoulli num-
bers for the spectral zeta function (e.g. Rabi-Bernoul-
li polynomials for the QRM). Note that the partition 
function can be recovered from the Rabi-Bernoulli 
polynomials since the Laurent expansion at the origin 
of the generating functions of the Rabi-Bernoulli 

μ∈Ω

μ∈Ω

*6 The Gaussian hypergeometric ODE (or function) has {0, 1, ∞} as 
regular singular points in standard form.

*7 For general systems, the spectral zeta functions are usually of 
Hurwitz type.

*8 This type of path is known as Hankel contour.
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polynomials is equal to the partition function. Although 
integral expressions for the positive integer points for 
the spectral zeta function of the NCHO are known, an 
explicit expression for the partition function has not 
been obtained. The values at negative integers may 
also be regarded as a generalization of Bernoulli 
numbers, called NC-Bernoulli numbers. Therefore, 
we might expect that the partition function is given by 
the Laurent series at the origin of the generating func-
tion of the NC-Bernoulli numbers. Unfortunately, at 
present, even with strong supporting evidence, it 
remains as a conjecture [20].

Nevertheless, the research towards conjecture has 
illuminated several aspects of the theory. For 
instance, to work with the formal expressions of the 
special values of the spectral zeta functions arising 
from the partition functions, it is useful to consider 
Borel-summation and non-Archimedian methods to 
deal with certain divergent series. In particular, cer-
tain expressions of special values of zeta functions 
that are divergent in ℝ may be interpreted as special 
values of zeta (Hurwitz type) functions [21] defined 
in the p-adic fields ℚp [20].

4.   L-functions and the structure of zeros of 
partition function

Table 1 shows a comparison between the zeta func-
tions ζQ(s) and ζ(s). As mentioned above, if we let 
α/β → 1 in ζQ(s), we essentially obtain ζ(s). However, 
what it is important is that ζQ(s) reveals a structure 
that is not visible in ζ(s). It is also worth remarking 
that we cannot expect ζQ(s) to have an Euler product 
expression or functional equation. In fact, the integral 
expressions at positive integer points obtained in a 
previous study [9] suggest that ζQ(s) may be expressed 
as a sum of number theoretical L-functions (zeta 
functions associated to certain representations). If 
this conjecture is correct, then even if the individual 
L-functions have functional equations, ζQ(s) may not 
have one. Similarly, the lack of a functional equation 
is not a contradiction since the axis of symmetry (the 
line ℜ(s) = 1

2  for ζ(s)) for each L-function in the sum-
mands may be different. In any case, further research 
is needed to clarify these questions.

On the right of Fig. 1, one of the points involves the 
partition function of the ferromagnetic Ising model, 
given by

Fig. 1.   Partition function and spectral zeta function.

Ramanujan conjecture

1916
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(Limited to holomorphic automorphic forms)

Mellin transform
Special values at negative integers

Galois group
Representation theory
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(1995, Wiles–Taylor)
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zeros of L-function
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Z(β) := ∑ eβ|X| ∏ ∏ axy  

(axy = ayx ∈ [–1, 1]).

In particular, the Lee–Yang circle theorem (1952) 
states that all of its zeros are imaginary numbers (in 
other words, that z = e–β lie in the unit circle) [22]. Of 
course, the zeros are important physically because 
phase transition precisely occurs around these points.

The study on the zeros of zeta functions and L-func-
tions motivated several research problems that 
inspired and led research in number theory in the 20th 
century, including the Weil conjectures, a finite field 
analog of the Riemann hypothesis that led to the inno-
vations in algebraic geometry by Alexander Grothend-
ieck and the Ramanujan “ℜ(s) = 11

2 ” conjecture on 
the absolute value of the zeros (of the reciprocal) of 
the L-function

L(s, Δ) := ∑τ(n)n–s 

=  ∏   (1– τ(p)p–s + p11–2s)–1 

associated to the automorphic form Δ(z) := e2πiz 
∏∞

n=1(1 – e2πinz)24 = ∑∞
n=1τ(n)e2πinz. On the side of 

partition functions and automorphic forms, the study 
of zeros of Eisenstein series has seen progress, but the 
significance of the results is still not clear. We expect 
that significant research on this area may also be con-
ducted from the perspective of phase transition.

Another interesting point is that the research on the 
distribution of angles (complex argument) of the 
Ising model with infinite site number |Λ| appears to 
be similar to the Sato–Tate conjecture regarding the 
distribution of angles of the zeros of L(s, Δ). For the 
Sato–Tate conjecture, it is also desirable to advance 
beyond the holomorphic automorphic forms and 
arithmetic geometry considered up to now, into non-
holomorphic and Maass forms, which appear in the 
Selberg trace formula.

In our institute, Horinaga investigated non-holo-
morphic automorphic forms [23], and Nakahama is 
working on the representation theoretical aspects 
underlying the NCHO, with the aim of defining a 
multivariate version of the NCHO [24]. This latter 
research is an application of a particular case of 
Howe’s theory of dual pairs [25] (i.e., the theory of 
spherical harmonics), which forms the basis of the 
modern invariant theory and has applications to auto-
morphic forms. Higher dimensional constructions of 
the NCHO may be obtained using general dual pairs 
[25], thus we may expect the appearance of Sigel 

modular forms in the study of spectral zeta functions 
for these generalized constructions.
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1.Introduction

Optical networks are becoming increasingly com-
plex due to trends such as disaggregation, dynamic 
provisioning, and ultra-wideband transmission. To 
fully leverage the potential capacity and maintain 
these advanced networks efficiently, it is crucial for 
operators to monitor the physical parameters of the 
entire link, including optical power and locations of 
loss anomalies.

Digital longitudinal monitoring (DLM), which has 
been studied intensively, estimates various physical 
link parameters distributed in the fiber-longitudinal 
direction solely by processing signals received at a 
digital coherent receiver (Fig. 1). Demonstrated 
monitored parameters include the longitudinal opti-
cal power profile [1–7], span-wise chromatic disper-
sion (CD) map [2], amplifiers’ gain tilt [2, 8], optical 
filter detuning [2], polarization dependent loss (PDL) 
[9–11], multi-path interference [6], and spectral and 
spatial power monitoring called optical link tomogra-
phy over C [2], C+L [8], and S+C+L [12] bands. 
DLM enables the localization of multiple anomalies 
over multi-span links without the need for dedicated 
hardware devices such as optical time domain reflec-

tometers (OTDRs) and optical spectrum analyzers, 
thus reducing installation costs of these devices. Lon-
gitudinal power monitoring (LPM) is of particular 
importance since optical power determines the gener-
alized signal-to-noise ratio (SNR) and its distributed 
measurement allows the localization of loss anomaly, 
both of which facilitate network management and 
control. Various demonstrations of LPM have show-
cased its capabilities, including a precise LPM 
closely matching the OTDR [4], demonstrations over 
10,000 km [5], LPM using commercial transponders 
[7], and field experiments [13].

The primary challenge with DLM is that it relies on 
the fiber nonlinearity, and high fiber launch power is 
necessary to achieve sufficient accuracy, which 
causes a quality of transmission (QoT) degradation in 
adjacent wavelength division multiplexing (WDM) 
channels due to excessive nonlinear interference 
(NLI). Most demonstrations used optical power far 
higher than the optimal operational point. We recent-
ly demonstrated LPM under system optimal launch 
power and WDM conditions with sufficient accuracy 
to locate several loss anomalies in field-deployed 
fibers [13]. In this demonstration, we also showed 
four-dimensional optical link tomography, which 
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direction by solely processing signals received at coherent receivers. In this article, the fundamentals and 
recent advances in DLM are reviewed, including working principles, spatial resolution, and key 
experiments demonstrating its feasibility for use in operations.

Keywords: digital longitudinal monitoring, digital coherent receiver, fiber nonlinearity
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visualizes optical power not only in the distance 
direction but also in the time, frequency, and polar-
ization, allowing for the localization of multiple QoT 
degradation causes such as PDL, spectral tilt, and 
time-varying power anomaly (e.g., fiber bending 
loss).

In this article, the fundamentals and recent advance-
ments in DLM are reviewed, with a particular focus 
on LPM, including the localization principle, an 
inherent limitation on spatial resolution (SR), algo-
rithms, and several key demonstrations of DLM.

2.   Working principle

LPM estimates the fiber-longitudinal optical power 
P(z) from received waveforms by extracting the non-
linear phase shift γ'(z) = γ(z)P(z) that the signals expe-
rienced during the fiber transmission, where γ(z) is 
the fiber nonlinear coefficient at position z. The key 
mechanism for the localization of the optical power is 
the interaction between fiber nonlinearity and CD in 
optical fibers [3]. To elucidate the localization prin-
ciple, let us consider the regular perturbation model 
for the fiber nonlinear propagation. In the first-order 
regular perturbation, the additive NLI jγ'(z)|A(z)|2 
A(z) is excited at each position on fibers, which is 

dependent on the original signal waveform A(z) (see 
Fig. 2). Such local NLIs propagate to the receiver, 
undergoing the remaining CD D̂zL from z to the link 
end L, and evolve as γ'(z)g(z), where

g(z) = jD̂zL[|A(z)|2 A(z)]. (1)

The total NLI at the receiver is the accumulation of 
the received local NLIs and represented as

A1 (L) = ∫
0

L
γ'(z)g(z)dz, (2)

which shows that {g(z)}z form a basis of the total 
NLI. Two of these basis vectors g(z) and g(z + Δz), 
separated by a distance Δz, are linearly independent 
in the presence of sufficient CD, allowing the corre-
sponding γ'(z) to be extracted at the receiver. The 
qualitative understanding is that sufficient CD alters 
the original signal waveforms during the propaga-
tion, and the excited NLIs at different locations are 
thus unique and distinguishable upon reception.

3.   Spatial resolution

One straightforward approach to extract the expan-
sion coefficient γ'(zk) at position zk (k ∈ [0, K – 1]) is 
to take the inner product of A1(L) and the correspond-
ing basis vector gk = g(zk). However, the basis {g(z)}z 

Fig. 1.   Concept of DLM and monitored physical parameters.
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is not orthogonal: the resulting inner product gk
†A1(L) 

involves not only γ'(zk) but also those at neighboring 
positions. In fact, it has been shown [3] that the 
expectation of the inner product of two vectors 
g(z)†g(z + Δz) is expressed under assumptions of sta-
tionary Gaussian signal and constant CD β2 over the 
link with negligible high-order dispersions as

c(Δz) ∝ 1

1 + 2j( Δz
zCD ) + 3( Δz

zCD )2

(zCD  0.288
|β2|BW2  for Nyquist signals), (3)

which is called the spatial correlation function (SCF) 
or spatial response function [3, 14]. Here, BW is the 
bandwidth of the signal. Figure 3 shows the SCF for 
various BWs. The SCF has a ‘width’ with long tails, 
suggesting that the estimated γ'(zk) values contain 
contributions from neighboring positions. This 
means that there is an inherent uncertainty in deter-
mining the position of loss events, limiting the SR of 

LPM. By defining the SR as the full width at half 
maximum of the SCF, obtain

SR  0.507
|β2|BW2 , (4)

indicating that the SR is enhanced with an increased 
CD and BW [3].

4.   Methods

The simple inner-product approach described 
above is called the correlation method (CM) [1, 3, 6]. 
However, due to the non-orthogonality shown in the 
SCF, the entire output of CM G†A1 = [g0, g1, …,  
gK – 1]†A1 is expressed as the convolution of the true 
power profile and SCF [3], which indicates the sensi-
tivity of the CM is limited as shown in Fig. 4 (blue). 
Another approach is the least squares (LS) (G†G)–1 
G†A1 [4], which minimizes ‖Gγ' – A1‖2. LS naturally 
deconvolves the convolution effects in CM by 
(G†G)–1, achieving precise LPM, as shown in red. 
However, the simple LS suffers from instability 

Fig. 2.    Perturbation model of fiber nonlinear propagation. NLIs from positions zk and zk+1 are linearly independent with 
sufficient CD, allowing the estimation of γ'k = γ' (zk).
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related to the ill-posedness of LPM, as pointed out in 
a previous study [4]. The penalized LS was therefore 
proposed [7] as

γ̂' = (G†G + λI)–1G†A1, (5)

where λ is a regularization parameter and I is the 
identity matrix. This method generalizes CM and LS 
as it approaches CM for λ → ∞, while it becomes LS 
for λ = 0.

Although most LPM demonstrations have used 
self-channel interference, cross-channel interference 
(XCI) or cross phase modulation can also be used to 
localize power events [15–17]. Although XCI-based 
methods require an access to two channels and their 
timing synchronization, they achieve high SR due to 
a large walk-off between two channels.

5.   Experimental demonstrations

Figure 4 shows an experimental demonstration of 
LPM using the LS estimation [4], which achieved 
precise estimation. This experiment used probabilis-
tically constellation shaped (PCS) 64 quadrature 
amplitude modulation (QAM) with a roll-off factor of 
0.1 and symbol rate of 100 GBd. The link under test 
was a 142.4-km 3-span standard single-mode fiber 
(SSMF) link with a 1.86-dB attenuation inserted at 
72.2 km. The fiber launch power was set to 15 dBm/
ch. While the CM (blue) reflects the overall power 
trend, it fails to align with the OTDR and is less sensi-
tive to the loss anomaly due to the convolution effect. 
On the other hand, the LS demonstrated a closer 
match with the OTDR, having a root mean square 
error (RMSE) of 0.18 dB and maximum absolute 

error of 0.57 dB. Figure 5 shows the LPM experi-
ment under the system optimal launch power and 
WDM conditions [4]. The WDM channels were 
loaded from an amplified spontaneous emission 
(ASE) source, shaped using an optical filter, with the 
channel under test set at the center of the WDM chan-
nels (Figs. 5(a)(b)). The optimal power was around 
1.5 dBm/ch (Fig. 5(c)). As shown in Fig. 5(d), LPM 
showed superior performance with high power 
(blue). However, the estimated power profiles at 1.5 
dBm/ch are still clearly visible, enough to locate a 
loss anomaly. The RMSE from the OTDR prior to the 
loss event was σ = 0.20 dB, and we set the detection 
threshold of 4σ = 0.80 dB. Since an inserted loss of 
1.20 dB exceeded the threshold, LPM successfully 
detected the 1.20-dB loss anomaly and can poten-
tially localize a 0.80-dB loss. These results indicate 
the feasibility of LPM for use in system operations.

6.   Summary

In this article, the fundamentals and recent advance-
ments in LPM are reviewed. Recent intensive efforts 
have led to significant progress, such as a precise 
LPM that closely matches the OTDR, the feasibility 
demonstration at operational launch power, and 
adapting LPM for use with commercial transponders. 
To achieve more reliable performance for deploy-
ment, future research should include (i) improving 
noise and distortion robustness for enhanced accura-
cy at operational optical power levels, (ii) developing 
lightweight algorithms, and (iii) enhancing function-
ality for monitoring a wider range of link parameters.
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1.   Adapting digital transformation tools for 
diverse work processes and system applications

Digital transformation (DX) has been attracting 
attention, and DX tools that run on personal comput-
ers (PCs), such as robotic process automation 
(RPA)*1 and digital adoption platform (DAP)*2, are 
becoming widely used. However, it is difficult to 
improve work efficiency in many fields by using con-
ventional DX tools. For example, the telecommuni-
cations business provides a variety of services with a 
complex combination of physical devices and logical 
functions. Operators working in this business are 
required to be accurate and efficient when handling 
vast amounts of information in real time. Carrying 
out such work involves many factors, one of the most 
important of which is the work system and applica-
tions. Each function has its own processes, and 
operations proceed through a combination of various 
work systems and applications (e.g., schedulers, 
email, and reception systems). Since the combination 
and use of these work systems and applications differ 
as the work changes, the operations have their own 
unique processes; however, they are not the best work 

processes*3 for each individual task. Even in such 
cases, the operator needs to integrate each process for 
each task and carry out the work (many tasks) as a 
single work process. However, in complex work pro-
cesses, conventional DX tools have not been able to 
provide sufficient support due to the challenges 
described in the following section.

2.   Challenges facing traditional DX tools

Two typical examples of situations that could not 
be improved with conventional DX tools are shown 
in Fig. 1. In the first example shown in Fig. 1(a), 
providing a user interface (UI) suitable for a variety 
of work environments has proved difficult. If a work 
system and applications are commonly used for both 
field (i.e., outdoor) work and office automation (OA) 
work, the UI suitable for each type of work will differ. 
Implementing a UI tailored to such diverse work 

Regular Articles

*1 RPA: A software technology that automates user operations.
*2 DAP: A software technology that supports the implementation of 

systems and tools.
*3 Work process: A way of executing operations related to work. It 

can also be paraphrased as a process, method, procedure, etc.

Collaborative Business Navigation 
Platform That Comprehensively 
Supports Work of Operators
Hiroki Koike, Hideaki Tanaka, Hidetaka Koya,  
Fumihiro Yokose, Hajime Nakajima, and Haruo Oishi
Abstract

NTT Access Network Service Systems Laboratories has long been developing technologies that 
contribute to more-efficient operations on personal computers and other information devices. We have 
implemented a collaborative business navigation platform as a new technology to continue this trend. 
Using this platform makes it possible to easily develop digital transformation (DX) tools suited to 
diverse work environments and operator roles. This article discusses the functions of the collaborative 
business navigation platform and the use cases of DX tools by using this platform.
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environments into the work systems and applications 
by using current DX tools can lead to high costs.

As shown in Fig. 1(b), it is difficult to flexibly 
handle complex and sophisticated work flows. Work 
processes involve diverse and multiple operators, 
work systems, and applications. Work efficiency can 
be improved by breaking down work processes into 
smaller parts and using DX tools to handle situations 
in which work can be streamlined (e.g., by automa-
tion); however, the number and types of situations 
that require improvement vary in accordance with the 
type of work, and it is inefficient and impractical to 
develop DX tools for each work type individually 
from scratch. To address the above challenges, the 
NTT Network Innovation Center developed the col-
laborative business navigation platform that is based 
on technology developed by NTT Access Network 
Service Systems Laboratories.

3.   Technical overview of the collaborative 
business navigation platform

The collaborative business navigation platform is 
software that runs in the background of the local envi-
ronment on Windows 10 and 11. The platform con-
solidates and integrates two major functions com-
monly required for DX tools: (i) a function for man-
aging and controlling screen elements (operation 
targets*4), such as buttons and text boxes, registered 
in the DX tool, and (ii) a function for monitoring the 

operation status (work status*5) during work pro-
cesses such as operator operations and screen chang-
es resulting from those operations. By centralizing 
the above functions and eliminating the need to 
develop each DX tool separately, most development 
tasks can be focused solely on preparing UIs, work 
processes, etc. (i.e., upper-level applications) that are 
tailored to the operator’s work environment and role. 
Thus, it becomes easy to develop DX tools that are 
tailored to the operator’s work environment and role.

To use DX tools developed using the collaborative 
business navigation platform, the upper-level appli-
cation and platform must be connected. As shown in 
Fig. 2, a DX tool can be developed by preparing 
arbitrary upper-level applications (such as chatbots 
and voice-recognition applications) that fit the opera-
tor’s environment and role. Two functions included 
on the platform become available: (1) a management-
and-control function for operation targets of work 
systems and applications (operation-target-abstrac-
tion function) and (2) a monitoring function for work 
status (work-status-abstraction function).

3.1   Operation-target-abstraction function
Conventionally, when developing a DX tool with 

Work system A 

Screen (UI)

Flexibly determine complicated
work flow

Understand/control each operation method

Work system A Work system B Work system C 

(a) Provide UI for diverse work environments (b) Application to operations that combine work flows in a flexible manner

I want to communicate
by voice as I work.

Fig. 1.   Challenges facing traditional DX tools.

*4 Operation target: A screen element on the work-system applica-
tion that is registered in the operation-target database.

*5 Work status: Operations carried out by the operator during the 
work process (starting the system, updating files, setting values, 
etc.).
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an automatic-operation function, as shown in Fig. 3, 
the developer had to manage the registration and 
modification of information identifying the operation 
target for each DX tool separately. By using this plat-
form, the developer can assign a unique, easy-to-read 
name to information that identifies the operation tar-
get and can centrally manage the corresponding 
information in the operation-target database on the 
platform. It is also possible to automatically create an 
operation-target database by extracting candidates 
for operation targets from the screens of work sys-

tems and applications [1]. When updating a work 
system or application, it is possible to estimate the 
destination of changes in operation targets in accor-
dance with the UI layout of the screen and the internal 
structure and enable the modification of information 
registered in the operation-target database.

3.2   Work-status-abstraction function
The ideal way to ensure efficient work is to take 

early action in response to ever-changing work condi-
tions. However, work processes become complex and 
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diverse. To determine the work status from conven-
tional DX tools accurately and in real time, it was 
necessary to implement individual mechanisms. 
Thus, it was difficult to use each mechanism easily, 
and operators needed to determine the status. To 
maximize efficiency, we developed a mechanism that 
enables real-time understanding of the status of work 
using DX tools.

The platform determines the work status by moni-
toring changes in the operation targets of work sys-
tems and applications displayed on the screen. By 
defining the work status to be detected as an “event” 
in advance and registering it in the work-event data-
base on the platform, the work status can be deter-
mined in real time when a DX tool is executed. As 
shown in Fig. 4, events are defined as patterns 
(monitoring conditions) that combine the “operation 
order” logged from PC terminals, etc. and the “sta-
tus” such as screen content. The work-status-abstrac-
tion function is defined by using the extended regular 
expression*6, and its flexibility allows for the expres-
sion of complex and diverse work situations. When a 
DX tool is executed, the work status is determined by 
pattern matching of events and operation logs record-
ed by monitoring the screen. A regular expression 
engine can be adapted to speed up the pattern match-
ing and provide a real-time understanding of the work 
status [2].

4.   Developer’s tool that supports 
visual configuration

For the operation-target-abstraction function, the 

setup screen shown in Fig. 5 is used to obtain infor-
mation that can identify the operation target of the 
work system and application. Multiple methods (cur-
sor position, click, focus, etc.) can be used in accor-
dance with particular complex work environments. 
By giving the operation target a unique name, it can 
then be registered in the operation-target database.

The work-status-abstraction function has a setup 
screen, as shown in Fig. 6. The basic monitoring con-
ditions (basic conditions) are set by selecting the 
“operation status” to be monitored (existence and 
display of the target, value settings, position changes, 
etc.) for the screen elements registered in the opera-
tion-target database. If the developer/user wants to 
monitor a series of operations rather than a single 
operation, they can set a compound of conditions 
(e.g., “basic condition 1 followed by basic condition 
2” or “basic condition 2 followed by basic condition 
1”) by considering the detection order of multiple 
basic conditions. By defining basic and compound 
conditions as events, it is then possible to register 
events in the work-event database.

By using functions based on NTT Access Network 
Service Systems Laboratories’ technology, as 
described above, the costs required to develop and 
manage DX tools can be greatly reduced, and a wide 
range of operating situations can be determined in 
real time, making it possible to easily develop DX 
tools tailored to various work environments and 
roles.
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*6 Regular expression: A method of expressing variations of strings 
that follow certain rules in a single string. A technique used pri-
marily in pattern matching.
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Fig. 5.   Operation-target-abstraction function on developer’s tool.

Collaborative business navigation platform
(screen-element list on developer’s tool)

Work systems, application, etc.

Cursor position Click Focus

[Estimate possible changes]
Extract candidates for correction of operation-
target information

Register
screen

elements

Operation-
target database

[Screen-element name]
Set a readable unique name

Fig. 6.   Work-status-abstraction function on developer’s tool.

[Monitoring condition type: Status]

Judgment condition

Monitoring conditions (combined): Example

(Basic condition 1) Customer name is entered as “ntt”.

(Basic condition 2) No entry exists in the email address.

• When the operation is performed in the order Basic condition 1 to Basic condition 2

• When the operation is performed in the order Basic condition 2 to Basic condition 1

• ...etc.

Collaborative business navigation platform
(monitoring-condition list on developer’s tool)

Collaborative business navigation platform
(screen-element list on developer’s tool)

Create
monitoring
conditions

Screen-element name
(unique name)



Regular Articles

84NTT Technical Review Vol. 22 No. 9 Sept. 2024

5.   Example usage of DX tools using the 
collaborative business navigation platform

5.1    Proposal-based operation support combined 
with chatbots

This example shows a DX tool that operators use 
for carrying out OA work. As the number of operations 
(scenarios) automated by RPA increases (due to con-
solidation and diversification of work), it is becoming 
cumbersome for operators to understand which  
scenarios to execute for each work status, and it is 
inefficient for them to execute scenarios. To achieve 
high operational efficiency independent of the opera-
tor’s skills and experiences, a mechanism is required 
that can automatically propose the most-appropriate 
scenario in accordance with the work status.

Combining a chatbot with the platform enables the 
operator to receive operation suggestions from the 
chatbot in accordance with the operator’s work status 
detected in real time by the work-status-abstraction 
function. The operator can proceed with automation 
scenarios while interacting with the chatbot. While 
carrying out the job interactively, the operator can 
acquire knowledge on their own, so it becomes pos-
sible to achieve high and stable job quality regardless 
of years of experience or work experience (Fig. 7(a)).

5.2    Voice-based operation support combined with 
voice UI

This example shows a DX tool used by operators in 
the field. When operators mainly work outdoors, they 
often operate work systems and applications on 
mobile devices while handling other tools. If they 
operate the device for long periods, especially in bad 

weather, the device might malfunction. Therefore, it 
is necessary to provide a DX tool with an appropriate 
UI that can address the above issues, rather than the 
traditional UI using touch, keyboard, and mouse 
operation.

Combining speech recognition and text-to-speech 
software with the collaborative business navigation 
platform enables the operator to operate work sys-
tems and applications by voice command without 
seeing the screen (Fig. 7(b)). Making it possible to 
call up manuals and input information into work sys-
tems and applications by voice leads to improved job 
efficiency in work environments in which it is diffi-
cult to operate devices using a mouse, keyboard, or 
touch UI.

6.   Future work

The collaborative business navigation platform 
makes it possible to provide operators with DX tools 
suited to their various work environments and roles 
simply by changing the upper-level applications. This 
platform is scheduled to be introduced within the 
NTT Group in 2024. We then plan to promote its 
general commercialization.
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1.   Importance of implementing DX measures in 
collaboration with workers in the field and 

DX-promotion departments

The use of digital technology is an effective means 
to achieve business transformation that can promote 
both operational efficiency and new-value creation in 
response to rapidly changing social and economic 
conditions. Companies and local governments are 
promoting organization-wide digital transformation 
(DX) of operations, such as field-led improvement of 
work efficiency through digital technology (field-led 
DX) and implementation of digital technology by 
DX-promotion departments.

Field-led DX has made progress in terms of auto-
mating and streamlining work procedures through the 

use of tools that automate desk work such as robotic 
process automation (RPA). However, field-led DX is 
often designed and implemented in a manner that is 
optimized for individual field operations; therefore, it 
is difficult for workers in other fields to determine 
whether the conditions for using field-led DX are 
compatible with their work. Currently, the only way 
to compare DX measures and field work is to observe 
and compare each manually, which requires many 
operations simply to select applicable examples from 
a variety of DX measures implemented at other 
fields. It will be important to improve business prac-
tices and procedures flexibly with a sense of urgency 
to meet the needs of society. This issue is faced by 
DX-promotion departments, and smooth rollout of 
DX measures is an essential element of fundamental 
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business improvements that will have an impact 
throughout the company. Accordingly, to further 
increase the effectiveness of DX promotion, it is nec-
essary to create a DX cycle in which workers in the 
field and the DX-promotion departments cooperate in 
a manner that efficiently and accurately implements 
effective DX measures in a wide range of areas 
(Fig. 1).

2.   Overview of 
work-improvement-support technology

To address the above issues, NTT Network Innova-
tion Center developed work-improvement-support 
technology, which is based on technology developed 
at NTT Access Network Service Systems Laborato-
ries, that can be used immediately in the field and in 
DX-promotion departments. This technology uses 
historical information on operations carried out on 
personal computers (PCs) (operation logs) to quanti-
tatively compare and visualize DX measures and the 
work procedures at the site that is considering apply-
ing the measures. The technology provides the fol-
lowing two tools that can be used immediately in the 
field or in DX-promotion departments.

•  Operation-log-acquisition tool: A tool that 
records the operational history of the screen and 
graphical user interface (GUI) of a PC in real 
time as an operation log.

•  Operation-log-analysis tool: A tool that reads 
data from the obtained operation logs, simplifies 
the logs as work procedures, quantitatively com-
pares similarities in the work procedures, and 

visualizes the comparison results in an easily 
understood format.

Using these tools makes it possible to quantita-
tively compare DX measures and on-site work to 
which those measures are considered being applied 
by using operation-log data accumulated in real time 
from daily work. These tools thus make it easier to 
objectively determine the suitability of DX measures 
on the basis of the actual state of work operations.

3.   Operation-log-acquisition tool

The operation-log-acquisition tool records opera-
tion history of the screen and GUI on PCs in real time 
as an operation log. The tool is installed in a PC in the 
Windows environment and records operation logs in 
file format according to operations by workers and 
automation tools such as RPA (see Table 1 for operat-
ing environment). The tool detects user input opera-
tions and changes in application and window statuses 
on the terminal screen and captures the operations 
carried out by the user as operation events. This infor-
mation can also be recorded and saved as log files (in 
text format) at an arbitrary location. The operation 
screen can be recorded and saved as a captured image 
upon detection of an operation event.

4.   Operation-log-analysis tool

The operation-log-analysis tool compares the simi-
larity of work procedures from the data of the 
obtained operation logs and visualizes them in an 
easy-to-understand format. It has the following three 

Fig. 1.   DX cycle of collaboration between workers in the field and DX-promotion department.
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functions.
(1)  Automatic extraction and visualization of  

similarities from work procedures
The similarity between work procedures is quanti-

tatively evaluated from the two types of operation-
log data, and the evaluation results are used to visual-
ize similar and dissimilar points of procedures (see 
“Similarity assessment based on operation co-occur-
rence” below for details of the evaluation technique). 
The screenshot in Fig. 2 is an example of analyzing 
and visualizing the similarities between the two types 
of operation-log data. For example, when the opera-
tion-log data concerning a DX measure are used as 
the comparison standard, and the operation-log data 
concerning the work at the site where the application 
of the DX measure is being considered are used as the 
comparison target, an operation range similar to that 
of the DX measure is extracted. This range is high-
lighted with a red border, so it is possible to see at a 
glance the similar points of work procedures. Simi-
larly, dissimilar points can also be extracted by speci-

fying the settings.
(2)  Detailed comparison of similar work procedures

The similar operation ranges of each operation 
extracted by function (1) are arranged side-by-side, 
and the similarities between them are compared in 
detail. The screen shot in Fig. 3 is an example of 
visualizing similar operations side-by-side. For 
example, if the background color of the operation 
logs to be compared is blue or green, the user can see 
at a glance that the operations are similar; if it is red, 
the operations are different (see Table 2). Each 
operation is converted into an explanation expressed 
in natural language that can be read and understood 
directly by the user (see “Generation of explanatory 
information about operation” below for details). This 
function makes it possible to understand the opera-
tions that can implement DX measures at the opera-
tional level.
(3)  Generation of material for manuals from opera-

tion logs
By combining the text data of the operation history 

Table 1.   Operating environment of the operation-log-acquisition tool.

Item Requirement

OS Windows 10/11

CPU Intel Core i3 2.9 GHz or more

Memory 4 GB or more

Applications that
can be acquired

Microsoft Edge*1,3, Google Chrome*1,3, Firefox*1,3, 
Microsoft Excel*2,3, Windows OS*3

*1: Record changes to contents of GUI 
*2: Record changes to contents of cell
*3: Window state changes, copy/paste operations, etc.

CPU: central processing unit
OS: operating system

Fig. 2.   Screenshot of visualization screen of similar areas.

Comparison
standard

Comparison
target

Similar areas are
highlighted

with a red border.
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acquired as an operation log with screen-capture data, 
it is possible to generate a document file combining 
the work procedure and screen of the corresponding 
work target as material for the manual. This function 
makes it possible to identify specific work proce-
dures related to DX measures and on-site work and 
can be used as an aid for creating manuals used in 
implementing DX measures.

5.   Features of NTT technology

5.1    Similarity assessment based on operational 
co-occurrence

Operation logs often contain fluctuations due to, for 
example, rework or interruptions by other operations, 
which depend on the situation during the operation. 
Therefore, NTT Access Network Service Systems 

Laboratories developed a technology for evaluating 
the similarity of operations by using operational co-
occurrence, which means that operations involved in 
similar work show mutual co-occurrence. This tech-
nology absorbs fluctuations in operations, correctly 
evaluates the similarity of operations, and exactly 
matches the range of similarity if they are similar, 
even if the operations are not exactly the same. 

The similarity-assessment technology based on 
operational co-occurrence sets one operation log as a 
reference log and extracts parts that are similar to the 
reference log from another operation log containing 
the operation target (target log).

This technology involves the following three steps 
(Fig. 4).

(1)  Information on operation events located 
closely together and near the reference log is 

Fig. 3.   Detailed screenshot of comparison screen of similar areas.

Table 2.   Judging whether operations are similar or dissimilar.

Background color of
the log to be
compared

Explanation Determination of
identity of
operation

Examples of operation logs

Blue (              )

When the operated 
screen and GUI parts  
are the same and the 
input data are the same

Same

•  Comparison standard: Input value “1” is selected 
from the label name “minute”

•  Comparison target: Input value “1” is selected from 
the label name “minute”

Green (              )

When the operated 
screen and GUI parts 
are the same but the 
input data are different

Different

•  Comparison standard: Input value “13” is selected 
from the label name “hour”

•  Comparison target: Input value “2” is selected from 
the label name “hour”

Red (              )
When the operated 
screen and GUI parts 
are different

Example of
operation log

•  Comparison standard: Input value “13” is selected 
from the label name “hour”

•  Comparison target: Input value “1” is selected from 
the label name “minute”
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stored as a co-occurrence matrix.
(2)  The cosine similarity of the previous and next 

few operations from a given operation in the 
target log is calculated using the information 
on the co-occurrence vector of the reference 
log created in step (1). This similarity is calcu-
lated for all operations in the target log. The 
key point of this technology is that it uses the 
co-occurrence vector and similarity between 
several operations before and after the target 
operation in the target log. By appropriately 
rounding off the sequential order in the opera-
tion log, it is possible to calculate a similarity 
close to the semantic similarity recognized by 
people. 

(3)  The operations are grouped in accordance 
with their similarity and extracted as matching 
and mismatching regions.

5.2    Generation of explanatory information about 
operations 

The operation log records information that indi-
cates operation history, such as the time the operation 
was carried out and GUI-component information, but 
it is in machine language, which is unsuitable for 
viewing and understanding by people. Therefore, 
NTT Access Network Service Systems Laboratories 
developed a technology that can be used as explana-
tory information by mapping labels to GUI compo-

nents. The technology takes advantage of the fact that 
labels that are easy for people to understand are 
expressed next to the GUI components. This makes it 
possible to generate text explaining operation proce-
dures automatically from operation logs in a manner 
that makes it possible to visualize the operation with-
out much effort. Logs can be obtained not only for 
operations carried out by people but also for opera-
tions executed with automation tools such as RPA, 
and explanatory information can be generated to 
facilitate understanding of the execution content of 
automated operation scenarios.

This technology involves the following three steps 
(Fig. 5).

(1)  On the basis of the format recorded in the 
acquired operation log, rules are used to deter-
mine the appropriate sentence structures for 
the explanatory text and the parts of speech 
that make up the text.

(2)  Two elements, parent-child relationships in 
the HTML and positional relationships on the 
display screen, are focused on, and the corre-
spondence with nouns (labels) that describe 
the GUI components at the operation location 
is inferred from information around the GUI 
components on the screen.

(3)  Explanatory text based on the sentence pattern 
determined in step (1) and the label obtained 
in step (2) is generated.
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Fig. 4.   Extraction of location similarity by operation co-occurrence.
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6.   Use cases

Three example situations in which the two above 
tools can be used are given below.
(1)  Creation of DX cycle through collaboration 

between the workers in the field and DX-pro-
motion departments

DX-promotion departments can use these tools to 
quantitatively compare the work involved in field-led 
DX measures and work involved in the field that is 
considering implementing the measures, and they can 
analyze and determine whether the measures are 
compatible. The tools thus enable efficient and accu-
rate implementation of DX measures in line with on-
site operations.
(2)  Expanding the scope of automation by evaluat-

ing the applicability of RPA scenarios
By comparing work automated by tools such as 

RPA as DX measures with manual work, it is possible 
to identify the scope of the RPA scenario. It thus 
becomes possible to identify similar areas as candi-
dates for RPA implementation and consider further 
improvements in business efficiency for the areas that 
differ.

(3)  Assistance in improving work skills through 
comparison with more-efficient employees

By using these tools to compare differences in work 
procedures executed by employees with high work 
efficiency, we can identify effective work carried out 
by certain employees that is not being carried out by 
other employees and use it as a teaching tool to 
improve the skills of the latter employees. Using this  
teaching tool will help create new DX measures that 
will improve overall operational efficiency.

7.   Future developments

Work-improvement-support technology for creat-
ing a DX cycle in which workers in the field and the 
DX-promotion departments cooperate to efficiently 
and accurately implement effective DX measures 
was introduced. This technology has just completed 
product development and can now be used for vari-
ous DX-promotion measures. We plan to promote 
application of this technology to actual business 
operations and commercialization in the general mar-
ket.

Fig. 5.   Extraction of explanatory information describing operation.

Obtain label of operation target

Input: PC operation screen 
and operation log

Determining the sentence type, verb, and particle of an explanation

Output: Explanatory text

(1) Select “Purchase” from “Voucher 
type” 

(2) Enter “Yamada Taro” in the 
“Nominated name” field

Operation log {…ope_value: "Purchase “…html_type:” select” }

Label information to be obtained

Location of operation

(1) Determination of sentence pattern,
verb, and particle of description

(2) Obtain label of operation target

(3) Generate explanatory sentence

Yamada Taro

Combining (a) and (b) effectively searches for labels.

(a) Focus on the parent-child relationship in HTML and search for 
label information by tracing the parent from the GUI
components of the operation location.

(b) Focus on the positional relationship on the display screen and 
search only in the direction where the label is likely to be
located.

Explanatory sentences for operation information are expressed in three
sentence types, and the parts of speech are obtained from lists and logs. 

Sentence-pattern listThree sentence types

Voucher type Purchase

Name

1

2

Voucher type Purchase

Name Yamada Taro

• Sentence 2: Noun1(operation part)+particle1+
Noun2(operation)+particle2+verb  

• Sentence 3: Noun1(operation part)+particle1+
Noun2(operation part2)+particle2+
Noun3(operation)+particle3+verb

• Sentence 1: Noun(operation)+particle+verb Sentence type particle
1 … Verbs to be

generated
html type
attribute

1 “of” … Press submit

2 “from” … Check checkbox

…

(a) Trace back to parent element and search

(b) Search only within a certain range
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1.   ITU-T SG16 meeting, April 2024, 
Rennes, France

The International Telecommunication Union - 
Telecommunication Standardization Sector (ITU-T) 
Study Group 16 (SG16) meeting was held 15–26 
April 2024 in Rennes, France with remote participa-
tion (hybrid). The author participated in the meeting 
online as an associate rapporteur for Question 8 (Q8) 
of Working Party 3 (WP3). Tables 1 and 2 show the 
management team of Q8 and the list of Contributions 
to Q8, respectively. Among the 11 Contributions, 6 
were additions and revisions to the existing draft Rec-
ommendations, and 5 were proposals to initiate new 
work items. The discussion and results are described 
below with emphasis on the proposal from NTT 
Group to initiate a new work item on first-person 
transfer immersive live experience (FT-ILE).

2.   Discussion summary and results of ITU-T 
SG16 Q8 meeting

2.1    Proposal of draft Recommendation H.ILE-
FT (SG16-C400)

A proposal to initiate a new draft Recommendation 
(H.ILE-FT: An architectural framework for FT-ILE) 
was submitted to internationally standardize NTT 
DOCOMO’s FEEL TECH technology [1]. The Con-
tribution proposed to describe the requirements, 
functional components, and architectural framework 
of FT-ILE in the draft Recommendation. “First-per-
son ILE” is first proposed in the Contribution. This is 
a new type of ILE in which the audience can experi-
ence first-person sensation. At a piano concert, for 
example, a remote user can experience vision, sound, 
haptic sensation, etc. of the actual piano player. In the 
conventional ILE, a remote user can experience the 
piano concert as if they were among the audience at 
the concert venue. This can be called third-person 
ILE. Figures 1 and 2 show the conventional third-
person ILE and proposed first-person ILE, respec-
tively.

In the example of transmission of haptic sensation 
of a pianist, a remote user can experience the pianist’s 
haptic sensation at the tip of their fingers. The sensa-
tion can differ from person to person, affected by 
their sensitivity to stimulation, the size of their hands, 
etc. Therefore, data and processing to adjust such dif-
ferences are necessary. First-person ILE uses data 
that are more closely related to the pianist and the 
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Table 1.   Management team of ITU-T SG16 Q8.

Position Name Affiliation (Country)

Rapporteur Hideo Imanaka NICT (Japan)

Associate Rapporteur Hoerim Choi KT (Korea (Rep. of))

Associate Rapporteur Jiro Nagao NTT (Japan)
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Fig. 1.   Conventional ILE (third-person ILE).

Table 2.   List of Contributions to ITU-T SG16 Q8.

Contribution Summary Source

SG16-C401-R1 Editorial revision of H.IIS-FA NICT

SG16-C610 Editorial revision and proposal for consent of H.IIS-FA China Telecom

SG16-C452 Addition to H.ILE-QR Clause 7 China Telecom

SG16-C527 Addition to H.ILE-QR China Telecom, China Unicom

SG16-C454 Addition to requirements of H.ILE-AMR China Telecom

SG16-C609 Addition to H.ILE-AMR Clauses OKI

SG16-C400 Proposal of new draft Recommendation H.ILE-FT NTT DOCOMO

SG16-C419 Proposal of new draft Recommendation H.ILE-3DIT NICT

SG16-C477 Proposal of new draft Recommendation H.ILE-ER China Telecom, China Unicom

SG16-C587-R1 Proposal of new draft Recommendation F.ARSArch China Telecom, China Unicom, ICT-CAS

SG16-C592-R1 Proposal of new draft Recommendation H.3D-INR China Telecom, MIIT

Fig. 2.   Proposed ILE (first-person ILE).
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users than the conventional third-person ILE, neces-
sitating a different architecture. With those consider-
ations as a background, a new draft Recommendation 
was proposed. 

The proposal was discussed at the meeting, and the 
initiation was agreed with comments. Support of the 
initiation was offered from KT (formerly, Korea Tele-
com), National Institute of Information and Commu-
nications Technology (NICT), and China Telecom 
during the meeting in addition to the source of the 
Contribution, NTT DOCOMO and NTT. Ms. Nishio 
(NTT DOCOMO) was appointed as an editor along 
with one from China Telecom.

2.2   Proposal of H.ILE-3DIT (SG16-C419)
Initiation of a new draft Recommendation H.ILE-

3DIT (Functional requirements and frameworks of 
three-dimensional (3D) model-based immersive tele-
presence system) was proposed by NICT. It proposes 
to clarify the functional requirements and frame-
works of a 3D model-based immersive telepresence 
system in which a 3D model of each remote partici-
pant is constructed from image information and dis-
played in real time at appropriate locations with 
appropriate posture in a shared 3D space. This is in 
line with an ILE service scenario of a remote meeting 
described in ITU-T Recommendation H.430.3 (ILE 
service scenario). The initiation was agreed.

2.3   Other proposals and discussion results
OKI and NICT contributed proposals to revise the 

existing draft Recommendations H.IIS-FA (Func-
tional architecture of interactive immersive services 
system) and H.ILE-AMR (Framework of ILE using 
multiple autonomous multimedia-enhanced mobile 

robots), respectively. These were agreed after discus-
sion. China Telecom and others proposed initiation of 
three new draft Recommendations. Two (SG16-
C587-R1, SG16-C592-R1) were agreed with revi-
sions to their titles (H.ILE-AR, H.ILE-3DINR). The 
other was related to Q26 of SG16. After consultation 
with Q26, it was agreed to continue collaboration 
with Q26, and the initiation was postponed. H.IIS-FA 
was consented. Other revision proposals to the exist-
ing draft Recommendations were discussed and 
agreed.

3.   Conclusions

New draft Recommendation H.ILE-FT, which aims 
for international standardization of NTT DOCOMO’s 
FEEL TECH technology, was initiated. NTT will col-
laborate with NTT DOCOMO to enrich the draft 
Recommendation. The current study period of ITU-T 
is in its final year. This means the World Telecom-
munication Standardization Assembly (WTSA), 
ITU-T’s highest decision-making body, will be held 
(this time in India in October 2024). It will be the first 
WTSA for the current Director of the ITU Telecom-
munication Standardization Bureau, Mr. Onoe, a 
former NTT executive. NTT will collaborate with 
ITU-T further for a successful WTSA.

Reference
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form for Sharing Haptic Information Between People,” Jan. 25, 2023.
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Distribution of Control during Bimanual Movement and 
Stabilization

A. Takagi and M. Kashino
Scientific Reports, Vol. 14, 16506, July 2024.
In two-handed actions like baseball batting, the brain can allocate 

the control to each arm in an infinite number of ways. According to 
hemispheric specialization theory, the dominant hemisphere is adept 
at ballistic control, while the non-dominant hemisphere is specialized 
at postural stabilization, so the brain should divide the control 
between the arms according to their respective specialization. Here, 
we tested this prediction by examining how the brain shares the con-
trol between the dominant and non-dominant arms during bimanual 
reaching and postural stabilization. Participants reached with both 
hands, which were tied together by a stiff virtual spring, to a target 
surrounded by an unstable repulsive force field. If the brain exploits 
each hemisphere’s specialization, then the dominant arm should be 
responsible for acceleration early in the movement, and the non-
dominant arm will be the prime actor at the end when holding steady 

against the force field. The power grasp force, which signifies the 
postural stability of each arm, peaked at movement termination but 
was equally large in both arms. Furthermore, the brain predomi-
nantly used the arm that could use the stronger flexor muscles to 
mainly accelerate the movement. These results point to the brain 
flexibly allocating the control to each arm according to the task goal 
without adhering to a strict specialization scheme.

  

Efficient Fiber-inspection and Certification Method for 
Optical-circuit-switched Datacenter Networks

K. Anazawa, T. Inoue, T. Mano, H. Nishizawa, and E. Oki
Journal of Optical Communications and Networking, Vol. 16, No. 

8, pp. 788–799, July 2024.
Datacenter networks (DCNs) consisting of optical circuit switches 

(OCSs) have been considered as a promising solution to dramatically 
improve their transmission capacity, energy efficiency, and  
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communication latency. To scale optical-circuit-switched DCNs 
(OCS DCNs), hierarchical OCSs with tens of thousands of optical 
fibers need to be installed, and they should be inspected before start-
ing datacenter operations. Since traditional DCNs consist of electri-
cal-packet switches (EPSs), the condition and cabling of fibers can be 
inspected easily by probing neighboring EPSs. However, OCS net-
works cannot be inspected in the same manner because OCSs cannot 
transmit and receive probe signals. Thus, we have had to attach and 
detach a light source and power meter (LSPM) to every switch for 
probing all the fibers, which takes weeks. This paper proposes an 
efficient method for inspecting and certifying fibers in an entire DCN 
without repeating LSPM reattachment. Our method is based on (1) 

theories on quickly estimating the fiber condition on the basis of the 
intensity of received probe signals, (2) the maximum allowable loss 
of each fiber derived from the transceiver budget used in operations, 
and (3) an algorithm that reduces the number of probes needed. The 
results from an extensive numerical evaluation indicate that our 
method inspected a DCN with 18,432 fibers in at most a day, where-
as a baseline method involving repeated LSPM reattachment would 
take more than a week. We also confirmed that our method never 
produced false negatives and false positives under practical network 
conditions.
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