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1.   A mathematical world woven by number 
theory, algebraic geometry, and 

representation theory

It is quite impressive that research into prime num-
bers was being carried out in Greece approximately 
2500 years ago. Two early important achievements 
were the proofs of the infinitude of prime numbers (in 
a constructive way), and the unique factorization of 
natural numbers into products of prime numbers. The 
original motivations for this research remain unclear. 
Until the invention of the RSA public-key cryptosys-
tem by Rivest, Shamir, and Adelman in 1977, there 
was no expectation for applications of number theory 
to engineering or society. In fact, it took more than 
300 years to establish RSA since the discovery of 
Fermat’s little theorem [1] (proved by Leibniz): “if p 
is a prime number and a is an integer, then ap ≡ a 
(mod p) holds,” which is one of the key technical 
results needed for public-key cryptosystems.

Number theory is the branch of mathematics that 
studies the properties of numbers, especially integers 
and number systems and structure derived from them 
[2]. These systems include algebraic number fields 
such as the rational number field, made up of all frac-
tions with the four basic operations (addition, sub-
traction, multiplication, and division); finite fields; 

local fields, such as the real number field; the set of 
numbers obtained as limits of sequences of rational 
numbers; and the fields of p-adic numbers. Number 
theory is said to have originated in the study of Dio-
phantine equations during the Roman Empire. Dio-
phantine equations are defined using polynomials 
with rational coefficients. Although it was desirable 
to completely solve them, this is generally difficult. 
Therefore, the interest was directed toward solutions 
that are rational numbers. This is probably because 
irrational numbers were thought to be incomplete 
numbers, being defined as limits of rational numbers. 

Although there is an infinite number of rational 
numbers, most real numbers are in fact irrational. 
Lumping them together would be like ignoring the 
dark matter in the universe. It would be unsatisfac-
tory as science. For example, the equation x2 – 2 = 0 
has an irrational solution, √2. Irrational numbers, 
such as √2 and 3√3, are called algebraic numbers and 
distinguished from transcendental numbers such as π, 
Napier’s number e, and 2√2. For √2 and 3√3, it is pos-
sible to compute √2 × 3√3 = 6√72 without going back 
to their definition as limits of rational numbers. In 
other words, the set of algebraic numbers defines a 
closed system of numbers within itself. Other types 
of numbers, such as √–1, have also been introduced 
and has enabled the expansion of the concept of  
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numbers. Even today, mathematicians are conscious 
of the problem of finding new classes of numbers that 
are broader than algebraic numbers. There is hope 
that we can find a broad, algebraically controlled 
class of transcendental numbers that have integral 
expressions called “periods,” such as pi, π = ∫x2+y2<1 
dxdy. This is known as the Kontsevich–Zagier con-
jecture. Although it seems difficult to solve the con-
jecture affirmatively, it is a sort of ideal guiding 
research. These attitudes toward numbers are also 
closely related philosophically to the three major 
classic Greek drawing problems of doubling the 
cube, angle trisection, and squaring a circle, which 
were proven unsolvable.

To determine whether a given equation has a ratio-
nal solution is a very delicate issue. For instance, the 
equation x2 + y2 = 1 (unit circle) has an infinite num-
ber of rational points, that is, with coordinates given 
by rational numbers. It is easy to confirm this by 
considering the intersection of a circle with a straight 
line that passes through the point (–1,0) and has a 
slope of tan θ/2 on a plane (using the double angle 
formula for trigonometric functions) (Fig. 1). How-
ever, there are no rational points on the circle x2 + y2 

= 0.999999, which is a slightly shrunk version of the 
unit circle. Speaking of subtleties, it took about 350 

years to solve Fermat’s conjecture (Last Theorem), 
which states that there are no rational points other 
than the obvious ones on xn + yn = 1 (n=3,4,5...). This 
could not have been achieved without rich theories 
that make full use of the best of modern mathematics 
to go beyond a pure algebraic perspective and tran-
scend the circle (which has the structure of an abelian 
group with addition as a product operation according 
to the addition theorem) to recognize the agreement 
between the zeta function determined locally from a 
geometric structure of an abelian group called an 
elliptic curve (Fig. 2) and a zeta function defined 
globally and related to representation theory.

The statement of problems in number theory, 
including the Fermat conjecture, are usually easier to 
understand than problems in other fields of mathe-
matics. The same can be said for combinatorics and 
graph theory. Some of the problems in combinatorics 
and graph theory, such as the construction of 
Ramanujan graphs, are deeply related to number 
theory and representation theory, and play a promi-
nent role in applications, including the construction 
of efficient networks. To solve these problems, a wide 
variety of methods are used, including using highly 
advanced modern mathematical tools (rather than just 
formulas and equations, they use abstract concepts 

Fig. 1.   Unit circle (the double angle formula for trigonometric functions).
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and techniques, e.g., considering the relations of 
objects with “arrows →”). For this reason, many con-
jectures (statements with supporting evidence but 
without mathematical proof) that appear sometimes 
simple remain unsolved. Two of the most well-known 
and challenging mathematical problems (both in 
number theory) are the Riemann Hypothesis, which 
has remained inaccessible for 165 years since its con-
ception, and the Birch and Swinerton-Dyer (BSD) 
conjecture, which describes the set of rational solu-
tions defining an elliptic curve. The Ramanujan and 
Weil conjectures, which were solved by Deligne 
thanks to Grothendieck’s innovations in algebraic 
geometry, led number theory research in the 20th 
century. The Taniyama–Shimura conjecture, which 
was the key to the Fermat conjecture, and the Lang-
lands program, which aims to construct a non-com-
mutative class field theory, give us grand dreams for 
the future. What is particularly noteworthy is that 
many of these can be expressed as the correspon-
dence of zeta functions and L-functions with different 
origins, including class field theory.

There is also active research into deriving number-
theoretic properties from abstract geometric objects, 
e.g., investigating rational points and integer points 
on orbits under dynamical systems determined by 
repeated composition of polynomials and rational 
functions and regarding finite-order points on figures 
with an abelian group structure as periodic points. 
For example, the far-unexplored Vojta conjecture in 
Diophantine geometry, which includes the Mordell 

conjecture (Faltings’ theorem), may be understood 
from this perspective.

It is thus not an exaggeration to say that number 
theory is voracious. It will use anything, including 
geometry, analysis, and probability theory, if neces-
sary to solve a problem. It actively draws on geomet-
ric inspiration to derive number-theoretic properties 
from the geometric properties of abstract figures, it 
makes extensive use of functions that precisely incor-
porate infinity while retaining invariance, and even 
incorporates measure theory into its scope of discus-
sion by closely observing distributions and density 
patterns that are familiar in probability theory. There-
fore, it does involve many fields of mathematics to 
advance its research but contributes to the develop-
ment of each of them. Bernhard Riemann’s research 
into analytic number theory, which began with the 
distribution of prime numbers, promoted the devel-
opment of the theory of complex functions with one 
variable. It was Carl Friedrich Gauss, the greatest 
mathematician of the 19th century, who said, “Math-
ematics is the queen of science, and number theory is 
the queen of mathematics.” This is usually taken to be 
a succinct expression of the beauty of number theory, 
but the true meaning may be about the brilliant use of 
a variety of mathematics to actualize this beauty.

The mathematical research covered in the Feature 
Articles in this issue [3–9] has as its background 
theories of arithmetic geometry, which explores 
problems in number theory using methods from alge-
braic geometry, arithmetic dynamics, dynamical sys-
tems of complex and p-adic fields, and automorphic 
forms, as well as representation theory. Representa-
tion theory is directly or indirectly related to number 
theory, mathematical physics, combinatorics and 
graph theory, special function theory, and differential 
equations and topology. For this reason, the NTT 
Institute for Fundamental Mathematics, to which the 
authors belong, is an organization that promotes 
research that is both cohesive and expansive in the 
field of mathematics, not only because of its appetite 
for number theory but also because of the central role 
of representation theory, a field that deals with sym-
metry and is at the intersection of algebra, geometry, 
analysis, and probability theory and has a wide range 
of applications.

We have put together these articles in the hope that 
readers will be provided a glimpse into some of the 
major trends in modern mathematics.

Fig. 2.   Elliptic curve: R = P + Q = −R’.
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2.   Number theory and arithmetic dynamics

2.1   Fermat’s Last Theorem
 Pierre de Fermat wrote “Cuius rei demonstratio-

nem mirabilem sane detexi. Hanc marginis exiguitas 
non caperet.” (I have discovered a truly marvelous 
proof of this theorem, which however the margin is 
too small to contain.) in the margin of his copy of 
Diophantus’ “Arithmetica.” After the annotated edi-
tion of “Arithmetica,” in which the problem he noted 
was published in 1670, many mathematicians chal-
lenged it for over 300 years until Andrew Wiles 
finally proved it in 1995. This theorem laid the foun-
dation for the development of arithmetic geometry.

Fermat’s Last Theorem: For any integer n greater 
than 2, there are no rational pairs (x, y) satisfying the 
equation (1) xn + yn = 1 with x, y ≠ 0.

When n = 2, the equation defines a circle with 
radius 1 centered at the origin. This circle has infi-
nitely many rational points (= points with rational 
coordinates). All these rational points can be repre-
sented as intersections of the circle with lines having 
rational slopes passing through (–1, 0). This means 
the rational points on the curve can be parameterized 
by a single parameter t, the slope of the line. The 
space of all such slopes is called the projective line. If 
we extend the coordinates to complex numbers, the 
figure defined by (1) becomes a real surface. The 
number of holes in this surface is called the genus. 
Geometrically, the projective line is a smooth curve 
of genus 0, while a smooth curve of genus 1 is known 
as an elliptic curve. Over complex numbers, an ellip-
tic curve looks like a torus (Fig. 3).

For n = 3 and n = 4, the curves defined by (1) are 
elliptic curves. Fermat proved the theorem for n = 4 

using a method called infinite descent, which was 
later extended to the proof of Mordell–Weil theorem. 
For n = 3, the proof was achieved by extending the 
world of numbers from rational numbers to numbers 
including the cubic root of unity and using the 
uniqueness of prime factorization in this larger num-
ber system. Today, this involves considering exten-
sions of a number field. Although unique factoriza-
tion does not hold in general number fields, Kum-
mer’s theory of ideal numbers, developed to over-
come this, became today’s ideal theory. The concept 
of field extensions laid the foundation for Galois 
theory and is crucial in modern number theory and 
arithmetic geometry. For m ≥ 5, the curve defined by 
(1) is of genus greater than or equal to 2, and 
Mordell’s conjecture (Faltings’ theorem) implies that 
such a curve has only finitely many rational solu-
tions.

Mordell’s conjecture (Faltings’ theorem): A smooth 
curve defined by polynomials with rational coeffi-
cients has only finitely many rational points if its 
genus is 2 or more.

This theorem is a remarkable connection between 
geometric information (the genus of the curve) and an 
arithmetic phenomenon (the finiteness of rational 
points). This result earned Faltings the Fields Medal 
in 1986. Although there is much more history to be 
discussed regarding Fermat’s Last Theorem, we con-
clude this section.

2.2   Elliptic curves
We mentioned that smooth curves of genus 0 can be 

parameterized by rational points, but it is not as sim-
ple for genus 1 elliptic curves. However, elliptic 
curves allow an “addition” where rational points can 

Fig. 3.   (From left) Sphere, torus, and double torus.
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be added together to produce new rational points. 
This means the set of rational points on an elliptic 
curve forms a group. This operation enables us to cre-
ate new rational points from known rational points. 
One of the key results is the Mordell–Weil theorem.

Mordell–Weil theorem: There exist finitely many 
rational points P1, P2, …, Pr, Q1, Q2, …, Qs on an 
elliptic curve E such that any rational point P on E 
can be uniquely expressed as P = n1P1 + n2P2 + … + 
nrPr + Qt (n1, n2, …, nr are integers, 1 ≤ t ≤ s), where 
Q1, Q2, …, Qs are points that become O (the identity 
element, i.e., P + O = P for any rational point P) 
under multiplication by some positive integer.

 
The number r is called the rank of the elliptic curve 

E, and Q1, Q2, …, Qs are called the torsion points of 
E. While Mazur has completely analyzed the group 
structure when restricted to torsion points, there 
remain many unresolved issues concerning the rank. 
One of the Millennium Prize Problems is the BSD 
conjecture, which examines the coincidence between 
the rank and order of the zero of the L-function. The 
existence or non-existence of elliptic curves with 
arbitrarily large ranks also remains an open problem. 
The current world record for the highest known rank, 
achieved by Elkies, is at least 28. It may be surprising 
at how small this record is, given the question of 
whether it is infinite.

 
2.3   Arithmetic dynamics

Problems in the field of arithmetic dynamics can be 
traced back to Northcott’s theorem in 1950, which 
states that a morphism defined over a number field on 
projective space has only finitely many rational peri-
odic points. However, the term “arithmetic dynam-
ics” started being used from 2000. It was clearly 
recognized as one field of study when the 2010 Math-
ematics Subject Classification (MSC2010) included 
11S82 Non-Archimedean dynamical systems and 
37Pxx Arithmetic and non-Archimedean dynamical 
systems. Broadly speaking, arithmetic dynamics 

studies the behavior of rational points under the itera-
tion of polynomials or rational maps defined over 
fields of arithmetic interest (such as p-adic fields or 
the field of rational numbers). Depending on whether 
the emphasis is more on number theory or dynamical 
systems, the nature of the research varies. From a 
number-theoretic perspective, a large goal might be 
to create a dictionary of analogies (or generaliza-
tions) between results about abelian varieties in num-
ber theory and their dynamical system analogs or to 
obtain new insights into arithmetic geometry through 
these analogies. Although detailed terminology can-
not be explained due to space limitations, the follow-
ing analogies are being considered (Table 1).

Problems regarding arithmetic dynamics over num-
ber fields are detailed in the article “Arithmetic Prob-
lems in Dynamical Systems” in this issue [3]. When 
the emphasis is placed on dynamical systems, the 
field appears somewhat more descriptive. There is an 
effort to trace similarities between non-Archimedean 
dynamical systems (such as those on p-adic fields) 
and complex dynamical systems, with applications to 
both complex dynamics and arithmetic dynamics. 
These topics are introduced in the article “How Num-
ber Theory Elucidates the Mysteries of Complex 
Dynamics—Viewed through Non-Archimedean 
Dynamics” in this issue [4] (Fig. 4).

Many books and surveys on arithmetic dynamics 
have been published, and extensive bibliographies 
[10] have been compiled. Simply glancing at the 
titles of the papers listed in these bibliographies 
reveals the rapid growth of this new field.

3.   Algebraic geometry and arithmetic geometry

3.1   A bridge between algebra and geometry
Solving equations is a fundamental but difficult 

task in mathematics. One of the ultimate goals in the 
field of algebra is to understand the behaviors of all 
equations of the form “polynomial(s) = 0,” called 
algebraic equations. Taking their “graphs” is a very 
important technique when studying algebraic equations. 

Table 1.   Dictionary between arithmetic geometry and dynamical systems.

Arithmetic geometry Dynamical systems

Space Orbit

Rational/Integral points on a space Rational/Integral points on an orbit

Torsion points on elliptic curves (Pre)Periodic points of rational maps

Mazur’s theorem Morton–Silverman’s uniform boundedness conjecture
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The graphs are “shapes,” for example, the graph of 
the algebraic equation x2 + y2 = 1 is nothing but the 
circle with radius 1 centered at the origin. The graph 
of y = m(x + 1) is the straight line with slope m pass-
ing through the point (–1, 0). The common solutions 
of the two equations are also expressed as the inter-
section of the two graphs (Fig. 1). Therefore, graphs 
transform algebraic problems into geometric ones, 
enabling us to benefit from the very rich intuition, 
tools, and ideas from geometry. 

The method of graphs was established by René 
Descartes in his book “Discours de la méthode” pub-
lished in 1637, and it is now taught in primary educa-
tion worldwide. However, there are limits to the 
intuitive method. If we increase the number of vari-
ables in the equations, their graphs are (usually) not 
able to be embedded into the three-dimensional 
spaces where we live; hence, we cannot “see” the 
graphs directly. Even if the graphs are (luckily) 
embedded in the three-dimensional space, their 
shapes could be too complicated to study just by see-
ing them with our eyes. After Descartes, many math-
ematicians made tremendous efforts over the centu-
ries to overcome these difficulties. Finally, we 
reached the huge theoretical system called “algebraic 
geometry.” The development of the theory of alge-
braic geometry throughout the 19th to the 20th centu-
ries was so rapid and innovative, and it had many 
irreversible effects on mathematics afterwards.

3.2    A mathematical paradigm shift—Which came 
first, functions or spaces?

A breakthrough in mathematics is often accompa-
nied with an important paradigm shift—in the case of 
algebraic geometry, it came from the relationship 
between spaces and functions. 

In modern mathematics, geometric objects are 
called “spaces.” The graphs of algebraic equations 
are also spaces. A function is a rule assigning a value 
to each point on a space. For example, we have a 
function f(x) = x + 1 on the real number line. The 
values of a function are just numbers, so we can 
define the addition, subtraction, and multiplication of 
functions on a space (we cannot define the division of 
functions in general since the value of a function 
could be zero, and the division by zero is not defined). 
An algebraic structure consisting of addition, sub-
traction, and multiplication is generally called a 
“ring.” In the above discussion, we have seen that the 
set of functions on a space has a natural structure of a 
ring. 

Let us consider the formula f(x) = 1/x, which associ-
ates to each x its reciprocal. In fact, this does not 
define a function on the entire real number line. 
Indeed, x = 0 does not have a reciprocal. However, if 
we consider the space obtained by removing the ori-
gin from the real number line, then f(x) = 1/x defines 
a function on it. This in turn shows that, if a function 
f(x) = 1/x lives on a space, the space cannot contain 
zero.

In this way, a space determines the ring of functions, 

Fig. 4.   Overview of research mentioned in this issue.
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and on the contrary, the structure of the ring of func-
tions reveals the property of the space. This phenom-
enon can be expressed, metaphorically, as follows: if 
we regard a space as a kind of a nation, then the func-
tions on the space could be thought of as the people 
living in the nation. If we have a nation, there are 
people living there and they are interacting with each 
other via “+, –, ×.” Conversely, if we want to know 
about the nation, it would be very effective to see the 
people there and how they interact.

On the basis of this observation, Alexander 
Grothendieck, one of the greatest mathematicians in 
the history of modern mathematics, boldly claimed 
that, “Any ring is the ring of the functions on a 
space.” In other words, he claimed that starting from 
any ring (which could be purely algebraic and could 
have nothing to do with geometry a priori), we can 
always find a certain space and regard each member 
of the ring as a function on the space. In fact, this is a 
vast generalization of Descartes’ idea of “taking 
graphs.” Given an algebraic equation, we can form a 
ring called the “residue ring” by a purely algebraic 
procedure, and the space associated with this residue 
ring recovers the graph of the algebraic equation 
(more precisely, the space is an algebraic variety, 
which is a geometric object that has richer informa-
tion than the classical graph).

Grothendieck established the above philosophy as 
a rigorous mathematical theory called the “scheme 
theory,” which rewrote the entire framework of clas-
sical algebraic geometry. His theory was developed 
on the basis of many methods and concepts from 
abstract mathematics developed in the 20th century, 
including categories and functors. 

3.3   Arithmetic geometry
The main purpose of Grothendieck’s scheme theory 

was to apply the method of algebraic geometry to 
number theory. One of the ultimate goals of number 
theory is to understand the properties of the ring con-
sisting of all integers. (It is a ring since the set of 
integers is closed under the addition, subtraction, and 
multiplication.) Thanks to the scheme theory, we can 
regard the ring of integers as the ring of functions on 
a space, hence can translate number-theoretic prob-
lems into geometric ones. The research field in which 
we study number theory using scheme theory is gen-
erally called “arithmetic geometry” (for more details 
about arithmetic geometry, see the article “Motives—
Abstract Art of Numbers, Shapes, and Categories” in 
this issue [5]).

Using the scheme theory, we can construct the the-

ory of geometry on the basis of a system of non-
intuitive numbers. For example, we often encounter a 
system of numbers in which 1 + 1 = 0 holds. Of 
course, this property does not hold in the world of real 
numbers. However, such a system of numbers is 
inevitable in the study of number theory, and even in 
many applications in science technologies. The 
scheme theory states that even in such a “strange” 
world of numbers, we can naturally consider nice 
geometry, making it possible to apply the method of 
algebraic geometry to information theory and cryp-
tography. Algebraic geometry and arithmetic geom-
etry stemmed from purely mathematical motivation 
and have been developed using many methods in 
abstract mathematics. However, surprisingly, they 
became a fountain of concrete applications in society.

Arithmetic geometry developed closely with alge-
bra, geometry, and analysis and became a mainstream 
of number theory. Interestingly, arithmetic geometry 
has provided many important concepts that have 
unexpected applications in different fields of science. 
For example, the theory of “weights,” which was a 
key to the proof of the Weil conjecture (an analogue 
of the Riemann hypothesis), became an essential 
basis of certain fields of theoretical physics, includ-
ing string theory and mirror symmetry. The theory of 
elliptic curves, which played a fundamental role in 
the proof of the Fermat conjecture, has been widely 
used in constructing post-quantum cryptography. 
Arithmetic geometry is relatively young in the histo-
ry of mathematics, and many innovations continue to 
occur. It will undoubtedly give us unexpected value 
in and outside mathematics in the next few centuries.

4.   Representation theory and 
automorphic forms

4.1   Group action
When mathematicians hear about representation 

theory, the first thing they think of is the action of a 
group on another object. When we think of groups, 
Évariste Galois, who died in a duel at the age of 20, 
comes to mind. He greatly simplified and generalized 
the proof of the Abel–Ruffini theorem, which states 
that “there is no formula for a general algebraic solu-
tion (a solution that can be expressed using the four 
arithmetic operations and roots) for equations of 
degree 5 or higher,” and used the forerunner of the 
group concept to characterize when a given equation 
has an algebraic solution. This theory is known today 
as Galois theory. Based on Galois theory is the monu-
mental achievement in class field theory of Teiji 
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Takagi, who studied under Frobenius in Berlin then 
under Hilbert and Klein in Göttingen at the turn of the 
19th century, for actualizing “Kronecker’s dream of 
youth (Kronecker’s Jugendtraum)” based on Gauss’s 
law of quadratic reciprocity. It can also be said that 
Galois theory is the pillar of the magnificent theoreti-
cal system now known as the Langlands program 
(conjecture/philosophy), which is aimed at develop-
ing a non-commutative class field theory. However, 
the definition of a group is quite simple, it is a set 
such that 1) there is a binary operation called “multi-
plication” satisfying the associative law, 2) an iden-
tity element exists, and 3) each element has an 
inverse.

Examples of finite groups are the familiar groups of 
symmetries of regular polyhedrons, the crystallo-
graphic point groups, symmetric groups that appear 
in the definitions of determinants, as well as general 
linear group GL(V), which is formed by regular (i.e., 
having the inverse) linear transformations on a finite-
dimensional vector space V. The series of operations 
required to align the puzzle pieces on a Rubik’s Cube 
can also be thought of as physical group of operations 
performed by the “hand.”

4.2   Representation theory of groups
When we speak of representation theory, we are 

sometimes asked, “Do you mean literature or art? Or 
is there something like that in the field of mathemat-
ics?” It is influenced by expressionism, the art move-
ment that originated in Germany in the early 20th 
century. It generally refers to the tendency to express 
emotions by reflecting them in works, as opposed to 
classical forms of representation*. Representation 
theory [11], in its most basic form, is the branch of 
mathematics that studies Vs on which elements of a 
group act as linear transformations of V (i.e., matri-
ces, once a basis is fixed). Historically, the opportu-
nity for representation theory to become an indepen-
dent research subject was the letter from Dedekind to 
Frobenius in 1886 regarding the problem of factor-
ization of the group determinants. This is the begin-
ning of the character theory of finite groups. A char-
acter is the trace of a representation (of a matrix-val-
ued function). In fact, a representation is essentially 
determined by its character. Sophus Lie also con-
ducted research aimed at developing a Galois theory 
for differential equations and founded the current 
notion of Lie algebras and Lie groups. However, 
when it comes to these representations, it is indis-
pensable to consider infinite dimensional Vs, in 
which case we need to consider the topology of the V. 

However, what decisively advanced the development 
of modern representation theory are the revolutionary 
theories in physics known as “relativity” and “quan-
tum mechanics,” as well as the dramatic progress 
made in number theory on the road to the Langlands 
program. 

From a technical standpoint only, and although they 
vary somewhat depending on the algebraic system, 
representation theory can be summarized and broadly 
divided into the following three goals:

•  Construction and classification of irreducible 
representations (creating a complete list with no 
omissions or duplicates). Irreducible representa-
tions play a fundamental role, analog to the 
prime numbers in number theory or elementary 
particles in particle physics. 

•  Decomposing a given representation into a 
“sum” of irreducible representations (division or 
reduction of complexity).

•  Study of various characteristics and/or geometric 
realizations of equivalence classes of irreducible 
representations. The various elements of the 
equivalence classes can be constructed, for 
example, using interesting geometric objects that 
are useful in applications.

Some people may wonder why groups such as 
matrix groups, which already seem simple, must be 
expressed as difficult linear transformations on infi-
nite dimensional spaces. However, the opposite is 
true. Even if something seems very complicated, if 
one unravels it correctly (decomposition), one will 
find that each part is simple (the action of an “easy” 
or “simple” group), thus one will be able to reach a 
true understanding of the object. These studies make 
full use of differential equations, functional analysis, 
the theory of special functions, combinatorics [12], 
and category theory, which has been well suited since 
Galois.

4.3   Automorphic forms
The Langlands program is often discussed purely in 

algebraic terms today, but the idea originated in Sel-
berg’s theory of analytic continuation of non-holo-
morphic Eisenstein series and Harish-Chandra’s 
research on the representation theory of reductive Lie 
groups. In fact, representation theory is a strong 
bridge for solving questions in number theory that are 
formulated purely algebraically by replacing them 
with analytical notions such as Fourier transforms 

* In Japanese, the word for both representation and expression is 
“hyogen (表現),” which is where the confusion comes from.
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and q-series (via automorphic forms [13]). The natu-
ral actions of continuous and discrete groups are 
behind it, and the description of invariance with 
respect to these actions often clarifies the problems. 
For example, after Fermat’s Last Theorem, the Sato–
Tate conjecture, which was considered to be many 
times more difficult, was (partially, i.e., a certain 
important class) solved by Richard Taylor and others 
in 2011. The Ramanujan conjecture, which led num-
ber theory in the 20th century, was that the absolute 
value distribution of the zeros of the L-function of an 
elliptic curve satisfies an analog of the Riemann 
hypothesis, but it was further formulated by Mikio 
Sato in 1963 that the argument (angle) distribution of 
the zeros follows a sin2-distribution. The difficulty 
lies in the fact that a problem that was solved with a 
single L-function in the Fermat conjecture must now 
be solved for an L-function associated with a repre-
sentation determined by a symmetric product of n 
numbers (n = 1,2,3...). This solution is groundbreak-
ing, but many more important issues remain unsolved. 
The challenge to the Sato–Tate conjecture is at the 
heart of the Langlands conjecture, and the solution 
awaits progress in non-holomorphic automorphic 
forms, which are deeply related to representation 
theory from the spectral viewpoint of invariant dif-
ferential operators. The two articles in this issue on 
automorphic forms/representations [8] and represen-
tation theory [7] focus on research that goes to the 
core of this problem. The relationship between repre-
sentation theory and quantum mechanics is deep and 
extends to number theory (e.g., [9]). It is also deeply 
connected to problems in invariant theory, combina-
torics, special function’s theory, probability theory, 
and statistics (e.g., [6]). Some of these issues are 
introduced in the articles in this issue.
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