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1.   History of modular forms and 
remaining problems

One of the origins of modular forms*1 is the study 
of elliptic functions that began in the 1800s when the 
accuracy of stargazing methods became more precise 
and astronomy improved rapidly. Since orbits of 
astronomical objects are generally ellipses, we need 
to measure the circumference of ellipses. Of course, 
it is easy to compute the circle’s circumference in 
terms of π, but with ellipses, it is challenging and 
written as the (second) elliptic integral. Through the 
studies of Legendre, Gauss, and Abel, elliptic inte-

grals became not only the circumference of ellipses 
but also interesting objects connecting to modern 
mathematics. A notable example is the theta function. 
Theta functions are used in various areas of mathe-
matics (Fig. 1). They are typical examples of modular 
forms, a central theme of this article, and play crucial 
roles in elliptic curves and number theory. As another 
application, Kronecker constructed class fields of 
imaginary quadratic fields. This study is called Kro-
necker’s Jugendtraum and is a significant result relat-
ing to a part of Hilbert’s 23rd problem*2. The study of 
modular forms started in this way with typical exam-
ples.

1.1    Developments of the theory of modular forms 
and obstructions

To further developments in the theory of modular 
forms, we needed to wait for the study of modular 
forms of Hecke, a student of Hilbert. Of course, there 
are many known results for modular forms, but 
Hecke arranged such results and initiated the theory 
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*1 Modular forms: Functions with quite strong automorphy. Due to 
the automorphy, it is highly nontrivial that modular forms exist. 
The modular forms we define below have several deep and inter-
esting arithmetic properties.

*2 Hilbert’s 23rd problem: German mathematician David Hilbert 
proposed 23 problems in 1900. These problems played a huge 
role in constructing the basics of modern mathematics. Although 
it has been more than 100 years since Hilbert’s proposal, up to 
half the problems have been proved.

Fig. 1.    The study on the circumference of ellipses reveals 
important interrelated concepts and objects in 
modern mathematics.
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of modular forms. Hecke defined the zeta functions 
and L functions for modular forms on the basis of the 
Riemann zeta function. These results opened the way 
for the theory of modern modular forms. This theory 
became the theory of automorphic representations 
through the works of Langlands and other mathema-
ticians. To review the theory of automorphic repre-
sentations, the Shimura–Taniyama conjecture is one 
of the most significant results. It is a profound conjec-
ture that connects automorphic representations and 
elliptic curves. In 1995, Wiles solved the “semi-
stable” case of the conjecture, proving Fermat’s con-
jecture completely. The Shimura–Taniyama conjec-
ture has now been completely proven. The paramod-
ular conjecture, a generalization of the Shimura–
Taniyama conjecture, has been partially proved. To 
formulate these conjectures, it is necessary to use 
automorphic representations, which also play a vital 
role in these conjectures.

We stated that the Shimura–Taniyama conjecture 
connects geometric objects, such as elliptic curves, 
and analytic objects such as holomorphic modular 
forms. Through the pioneering studies of many 
researchers, for example, Shimura and Langlands, 
the Shimura–Taniyama conjecture exceeds the origi-
nal formulation and became a theory to unify algebra, 
analysis, and geometry (Fig. 2). However, there is a 
remaining problem in the theory of modular forms, 
i.e., a study of non-holomorphic modular forms. 
Shimura and Taniyama formulated the conjecture on 
the basis of many numerical computations of Fourier 
coefficients of modular forms. However, no known 
examples of Fourier coefficients of non-holomorphic 
modular forms exist. The lack of such examples is an 
obstruction of further development. Recall that we 
prove the Shimura–Taniyama conjecture and hyper-
sphere packing problem*3 using holomorphic modu-

lar forms. It is easy to imagine that non-holomorphic 
modular forms have several applications similar to 
holomorphic modular forms, but there is room for 
improvement in modular forms. In this article, we 
first discuss the relationship between Fourier expan-
sion and representation theory then discuss the Lang-
lands conjecture and Arthur conjecture, which may 
be viewed as a generalization of the relationship, and 
introduce a joint study with myself and Narita, a pro-
fessor of Waseda University, about Fourier expansion 
of non-holomorphic modular forms. 

2.   Fourier expansion and representation theory

2.1   Fourier expansion
Many people may have heard of Fourier expansion 

and Fourier transform. These are indispensable tech-
niques for modern society; for example, they are fre-
quently used to process sound signals. No matter how 
complicated sounds are, we may construct complex 
sounds using simple ones such as the time signals on 
television and radio. This point of view is the method 
of Fourier transform and Fourier expansion. In math-
ematics, one may regard such simple sounds as sin x 
and cos x functions. In pure mathematics, Fourier 
expansion means an expansion of periodic functions 
as sin x and cos x, and Fourier coefficients are the 
coefficients in such an expansion. Fourier expansion 
plays a significant technical and theoretical role in 
modern mathematics. We first discuss the relation-
ship between Fourier analysis and representation 
theory.

The philosophy of Fourier expansion and Fourier 

Fig. 2.   Modular forms, zeta and L functions, geometric objects.
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*3 Hypersphere packing problem: An analog of the ball-packing 
problem in 3 dimensions, known as the Kepler conjecture. Vi-
azovska solved the problem for 8 and 24 dimensions and won the 
Fields medal in 2022.
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transform is to understand the space of periodic func-
tions via the translations for periodic functions. To 
understand this, we discuss the mathematical details. 
Let f be a complex-valued function on the space of 
real numbers ℝ. We say that f has the period 1 if f(x + 
1) = f(x) for any x ∈ ℝ. Thus, we may regard f as a 
function on ℝ/ℤ. The theory of Fourier expansion 
tells us to rewrite f as a sum of sin x and cos x. More 
precisely, by e2π –1 ny = cos(2πnx) + –1 sin(2πnx), 
we have an infinite sum

f(x) =  ∑ ane2π –1 ny.

Such an expression is called Fourier expansion, and 
coefficients an are the Fourier coefficients. It is 
known that an equal Ff(n), where Ff is the Fourier 
transform.

In representation theory, we divide mathematical 
objects, such as periodic functions, into smaller 
objects with more precise conditions such as periodic 
functions. A typical example of representation theory 
is the action of matrices on vector spaces. We can eas-
ily understand the action of matrices by dividing 
them into eigenvalues and eigenvectors. Such a 
framework is one fundamental aspect of representa-
tion theory.

Next, we discuss the relationship between Fourier 
analysis and representation theory. In the above rep-
resentation theoretical method, we consider the vec-
tor spaces and the matrices acting on them as the 
space of periodic functions and the “translation,” 
respectively. For a periodic function f and real num-
ber y ∈ ℝ, we define the translation ry by ryf(x) = f(x 
+ y). Then, the n-th Fourier coefficient of ryf equals 
ane2π –1 ny. Therefore, the action defined by the 
translation ry by y has the function x ↦ e2π –1 ny as an 
eigenfunction and e2π –1 ny as the eigenvalue of it. 
Summarizing thus far, by combining the period func-
tion, Fourier transform, and the translation, we con-
clude that the following two objects relate:

•  Representations on ℝ/ℤ defined by y ↦ e2π –1 ny

•  n-th term of Fourier expansion of period func-
tions

We thus grasp one face of representation theory by 
connecting a function and representations, a mysteri-
ous object. We may find this a surprising correspon-
dence in a broad framework rather than an easy object 
ℝ/ℤ. The central theme of the next section is a gen-
eralization of such surprising correspondence.

2.2    From Fourier analysis to Langlands conjecture
We deeply observe the relationship between func-

tions and representations for ℝ/ℤ and period func-
tions. A fundamental property is the “compactness” 
of ℝ/ℤ. For a non-compact object such as the real 
numbers ℝ, such correspondence becomes more dif-
ficult due to technical difficulties, for example, a 
convergence of integrals. We may find differences 
between Fourier analysis of period functions and a 
function on ℝ in certain literature on Fourier analysis. 
The nature of these differences comes from the topo-
logical property of ℝ and ℝ/ℤ, i.e., the non-compact-
ness of ℝ.

Harish-Chandra produced a breakthrough in the 
representation theory of reductive groups, one of the 
most essential classes of non-compact groups. He 
mainly considered the Lie groups, containing ℝ and 
ℝ/ℤ. His pioneering work is the classification of dis-
crete series representations. Recall that we consider 
the space of functions for ℝ and ℝ/ℤ. For reductive 
groups G, he considered the space L2(G) of square-
integrable functions*4 and translations on it. We may 
naturally find discrete series representations in L2(G). 
A realization of discrete series representations on 
L2(G) is done by matrix coefficients*5. Like this, we 
highly develop the representation theory through a 
space of certain functions and analysis. On the basis 
of Harish-Chandra’s study, Knapp and Zuckerman 
classified the tempered representations, and Lang-
lands classified all the irreducible representations of 
Lie groups (Table 1). This classification is due to 
Langlands and is called the Langlands classification. 
Since Lie groups are a theory for ℝ or complex num-
bers ℂ, number theorists need a similar theory for 
p-adic groups.

On the basis of various trials and errors, the local 
Langlands conjecture, the classification theory of 
irreducible representations on p-adic groups, was 
becoming clear. The local Langlands conjecture 
states the correspondence of the following two 
objects for a connected reductive group G*6:

 {Irreducible representations of G} → {L 
parameters of G}.

n=–∞

+∞

*4 Square-integrable function: A function f on G such that ∫G |f(g)|2 dg 
< +∞.

*5 Matrix coefficients: A representation ρ is a homomorphism ρ of a 
group to the group of matrices, possibly infinitely columns and 
rows. An entry of a matrix in the image of ρ is called the matrix 
coefficient.

*6 Connected reductive group: For an algebraic group, we mean a 
group and algebraic variety. Connected is the connectedness as 
an algebraic variety, and reductive is a class of groups. For ex-
ample, general linear, orthogonal, and unitary groups are con-
nected reductive groups, but upper unipotent groups are not re-
ductive.
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L parameters on the right side are arithmetic objects 
and define an L function.

As in another article [1] in this issue, one aspect of 
the local Langlands conjecture is a non-commutative 
class field theory. Such an aspect appears in the L 
parameters. The local Langlands conjecture has made 
significant progress and become more precise. It is 
now called the endoscopic classification.

The representation theory of p-adic groups and 
modular forms or automorphic representations are 
inseparable. They have a history of developing 
together while compensating for each other’s weak-
nesses. Finally, we discuss the author’s results for the 
Fourier expansion of non-holomorphic modular 
forms.

3.   Modular forms and representation theory

3.1    Fourier expansion of holomorphic modular 
forms

We first consider the Fourier expansion and coef-
ficients of holomorphic modular forms. Let ℌ be the 
upper half plane*7 and SL2(ℝ) be the special linear 
group of degree two*8. The group SL2(ℝ) acts on ℌ by 
the linear fractional transformation*9. Let Γ = SL2(ℤ) 
be the subgroup of SL2(ℝ) with integer entries. Set j 
to be the factor of automorphy*10. Take an integer k 
and holomorphic function f on ℌ. We say that f is a 
modular form*11 of weight k with respect to Γ if 
f (γ(z)) = j(γ, z)k f(z) for any z ∈ ℌ and γ ∈ Γ. Thus, 
modular forms are not entirely invariant under Γ 
other than k = 0 but is invariant under Γ with certain 
modified factors due to k and j. In particular, one 
would obtain f(z + 1) = f(z) for a modular form f. 
Since f is holomorphic, one obtains the following 
Fourier expansion by Cauchy’s integral formula:

f(x + –1y) =  ∑ ane2π –1 n(x+ –1 y).

Surprisingly, an are independent of the imaginary part 
y under this expression. This expression is usually 

called the Fourier expansion of f, and an are called the 
Fourier coefficients of f.

3.2   Modular forms and representation theory
We observed a strong relationship between transla-

tions on function spaces and representation theory. 
Similar phenomena may occur for modular forms. 
More precisely, we may lift modular forms to func-
tions on a Lie group. Let φf be the lift of f. We then 
may regard φf as a function on C∞(Γ∖SL2(ℝ)). As we 
have seen in the section discussing the Fourier expan-
sion, one can define the right translation by SL2(ℝ) on 
the space Γ∖SL2(ℝ). Thus, modular forms and repre-
sentation theory of SL2(ℝ) relate. With a similar 
method, modular forms would become a function φf 
on an adele group SL2(𝔸) using the adele ring 𝔸 of ℚ. 
If f is square-integrable or more strongly f is a cusp 
form, φf is a function on L2(SL2(ℚ)∖SL2(𝔸)). We 
summarize that from a square-integrable modular 
form f, the function φf becomes a function on 
L2(SL2(ℚ)∖SL2(𝔸)) and relates representations of 
SL2(ℝ) and SL2(ℚp). This phenomenon resembles 
Fourier analysis and representation theory (Fig. 3).

In the modern modular form theory, we generalize 
SL2 in L2(SL2(ℚ)∖SL2(𝔸)) to a connected reductive 
group. Like Harish-Chandra’s study on discrete 
series, we may consider the discrete spectrum of 
L2(SL2(ℚ)∖SL2(𝔸)). A recent study gives us a descrip-
tion of such a discrete spectrum. This study is based on 
the research of many researchers. Arthur, a student of 

n=–∞

+∞

Table 1.   Classification and construction of representations.

Classification
Properties of matrix

coefficients
Construction

Discrete series Harish-Chandra Square-integrable Realization on L2 space via matrix coefficients 

Tempered representations Knapp–Zuckerman Tempered Parabolically induced representation

Unitary representations Unknown Definable Unknown in general

Irreducible representations Langlands Non-definable Langlands quotient of parabolically induced 
representations

*7 Upper half plane: The set of complex numbers with positive 
imaginary part.

*8 Special linear group of degree two: The group of invertible real 2 
× 2 matrices with determinant one.

*9 Linear fractional transformation:
 (a

c    b
d) (z) = az + b

cz + d ,    (a
c    b

d) ∈ SL2(ℝ)

*10 Factor of automorphy: For z ∈ ℌ and γ = (a
c    b

d) ∈ SL2(ℝ), we 
put j(γ, z) = cz + d.

*11 Strictly speaking, this definition states that the function is a weak 
modular form. For a weak modular form f, we say that f is a 
modular form if the Fourier coefficient an defined below is zero 
for n < 0.
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Langlands, established the Arthur conjecture, which 
describes the discrete spectrum and proves his con-
jecture for orthogonal and symplectic groups under 
appropriate modification. This study is one of the 
highest peaks in modern theory of modular forms. 
Many researchers now consider generalizations and 
applications of Arthur’s study.

3.3    Toward the generalization of Fourier expan-
sion of modular forms

We saw that the Fourier coefficients of holomor-
phic modular forms f are constant. This fact is based 
on the holomorphy of f. Thus, if we remove the holo-
morphy assumption, the Fourier expansion of f is 
expressed as

f(x + –1y) =  ∑ an(y)e2π –1 n(x+ –1 y).

The coefficients an(y) depend on the imaginary part 
y. Therefore, it is not easy to consider an(y). In the 
joint study with Narita [2], we treat such Fourier 
expansion of non-holomorphic modular forms. A 
typical example of a non-holomorphic modular form 
is a Maass form, but we do not treat Maass forms. Our 
main target is a modular form naturally arising from 
representation theory*12. Discrete series representa-
tions are a key idea in our joint study. We recall Har-
ish-Chandra’s classification of discrete series repre-
sentations to understand the idea. The modular form 
on the upper half plane corresponds to a function on 
SL2(ℝ). In a certain sense, there is essentially only 
one discrete series representation of SL2(ℝ). One of 
the difficulties of Maass form is that the correspond-
ing representation is not a discrete series representa-
tion. An example of a group with non-holomorphic 
discrete series representations is the symplectic group 
Sp4(ℝ) of degree two. For Sp4(ℝ), there are essen-
tially two discrete series representations in a certain 

sense. One is holomorphic and the other one is non-
holomorphic. Also, Sp4(ℝ) is a minimal with such a 
property. We may define a modular form on Sp4(ℝ). 
Such a modular form is a function on the Siegel upper 
half plane ℌ2 of degree two*13 satisfying the Fourier 
expansion:

f(x + –1y) =           ∑           ah(y)e2π –1 tr(hx),  

x + –1y ∈ ℌ2.

The ah(y) are called the generalized Whittaker func-
tion. Unlike holomorphic modular forms, ah(y) are 
never a constant. We can introduce a differential 
equation to evaluate ah(y) when considering the dis-
crete series representations. In our joint study, we 
explicitly compute the solution of the differential 
equation and prove several properties of ah(y). As an 
application, we explicitly describe the space of all the 
non-cuspidal automorphic forms, generating discrete 
series representations of Sp4(ℝ). As in Fig. 4, this 
joint study is the first to describe all the non-cuspidal 
modular forms, including their construction. In our 
next joint study, we will consider an explicit compu-
tation of Fourier coefficients. We will extend our 
research to provide an arithmetic property of L func-
tion through explicit computation of modular forms 
corresponding to discrete series representations.

n=–∞

+∞

h∈Mat2(ℚ), th=h

Fig. 3.   Comparison of local and global.
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*12 Modular forms are, of course, related to a function on groups. If 
a modular form relates to a representation σ, we say that a modu-
lar form generates σ.

*13 Siegel upper half plane ℌ2 of degree two:
 ℌ2 = {z ∈ (a

b    b
c ) ∈ Mat2(ℂ) | Im(z) is positive definite.} 
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Fig. 4.   Current status of mine and Narita’s.
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