
NTT Technical Review 36Vol. 22 No. 11 Nov. 2024

1. Data analysis for large-scale data

Interest in data science has surged. One sign of this
trend is the Harvard Business Review’s 2012 intro-
duction of data scientists as “the sexiest job of the
21st century.” Many companies actively use data sci-
ence, and numerous universities are now dedicated to
cultivating talent to support this field. This trend has
intensified annually, highlighting the growing impor-
tance of data science. One reason for the heightened
interest is that companies can enhance business value
by deriving effective marketing strategies from data
analysis. The Economist’s article, emphasizing data’s
value with the phrase “data is the new oil,” also con-
tributed to the widespread recognition of data analy-
sis’s importance.

The volume of digital data, which is the subject of
data analysis, has been increasing rapidly. According
to market research reports, the amount of digital data,
which was approximately 12.5 zettabytes (around
1.25 billion terabytes) in 2014, is predicted to reach
about 181 zettabytes (around 18.1 billion terabytes)
by 2025. Extracting patterns and trends from such a
vast data pool to support human decision-making is

essential for effectively using this new resource
called data. However, a significant challenge is that
data analysis on such a massive scale incurs enor-
mous computational costs due to the complexity of
data analysis.

Approximate computation is seen as a reasonable
way of reducing such computational costs. However,
approximate computations emphasize speed over
precision, resulting in a trade-off between computa-
tion time and analysis accuracy. Therefore, reducing
computation time lowers analysis accuracy, and
improving accuracy increases computation time.
Since data analysis is used to support human deci-
sion-making, degrading the rigor of analysis results is
not desirable.

My research colleagues and I are advancing
research and development activities to build a
machine learning platform that achieves both speed
and rigor in data analysis (Fig. 1). A key to this plat-
form is computational pruning. Computational prun-
ing accelerates processes by eliminating unnecessary
computations without compromising the accuracy of
the results. This article introduces three representa-
tive pruning methods: (1) omission of computations

Fast Knowledge Discovery from
Big Data―Large-scale Data Analysis
with Accuracy Guarantee via
Efficient Pruning Methods
Yasuhiro Fujiwara
Abstract

There is growing interest in effectively using artificial-intelligence-based data analysis. Unfortunately,
analyzing large-scale data incurs excessive computation costs. While approximate methods are com-
monly used to reduce computation costs, they cannot yield exact results; they sacrifice accuracy to
improve efficiency. This article introduces representative methods of pruning unnecessary computations
for fast and accurate data analysis.

Keywords: large-scale data, data analysis, efficient processing

Feature Articles: Exploring the Nature of Humans and Information
for Co-creating Human-centered Technologies with AI

Feature Articles

37NTT Technical Review Vol. 22 No. 11 Nov. 2024

using upper and lower bounds, (2) termination of
computations that cannot yield solutions, and (3) fast
computations through optimistic processing.

2. Omission of computations using upper and
lower bounds

First, I introduce a pruning method that uses upper
and lower bounds to omit computations. This method
rapidly identifies unnecessary processes by using
upper and lower bounds of scores to skip unnecessary
computations. An example of this pruning method is

the acceleration of CUR matrix decomposition.
CUR matrix decomposition decomposes a given

matrix X using its subsets of rows and columns
(Fig. 2(a)). In Fig. 2(a), matrix X has the size of 7 ×
4, and in CUR matrix decomposition, this matrix is
represented using two blue subsets of columns and
three orange subsets of rows. CUR matrix decompo-
sition can extract important features from high-
dimensional data by finding characteristic subsets of
rows and columns that well represent the given
matrix. For instance, time-series data generated over
long periods from high-functioning sensors in a

Fig. 1. Machine learning platform.

Support
decision-making

Machine learning
platform

Fast and accurate data
analysis by pruning Uncover patterns and

trends in data

Collect large-scale data

Fig. 2. Efficient CUR matrix decomposition.

Compute importanceIterate

Zero feature for
negative importance

Non-zero feature for
positive importance

(a) CUR matrix decomposition

(b) Parameter matrix

Subset of
columns Subset

of rows

(c) Computational pruning

Skip computations Preferentially compute

Matrix X

0 0 0 0

Upper bound of
importance is negative.

Lower bound of
importance is positive.

0 0 0 0

Feature Articles

NTT Technical Review 38Vol. 22 No. 11 Nov. 2024

factory can be represented as a matrix of sensor count
× time length, resulting in a very large number of
rows and columns. By applying CUR matrix decom-
position, we can identify the significant rows and
columns that represent the matrix well, allowing us to
pinpoint characteristic sensors and time periods from
massive data, which yields effective factor analysis
for enhancing factory productivity.

In CUR matrix decomposition, a parameter matrix
corresponding to each feature in matrix X is intro-
duced to calculate the importance of each feature.
Important features are extracted by setting features
with negative importance to zero. In Fig. 2(b), the
parameter matrix has four rows corresponding to
each column’s features in matrix X in Fig. 2(a). In
Fig. 2(b), the first and third rows of the parameter
matrix are zero, indicating that the features of the first
and third columns of matrix X in Fig. 2(a) are not
important. In contrast, the features of the second and
fourth columns are important. Although CUR matrix
decomposition extracts important features from the
parameter matrix, it requires iterative calculations,
which are computationally expensive, making it dif-
ficult to apply it to large-scale data.

We proposed a method to rapidly execute CUR
matrix decomposition by lightly calculating the upper
and lower bounds of importance [1]. This method
accelerates the iterative calculation of importance. As
shown in Fig. 2(c), if the upper bound of importance
is negative, the exact importance will also be nega-
tive, enabling us to skip the calculation of that fea-
ture. If the lower bound of importance is positive, the
exact importance will also be positive, so we priori-
tize calculating that feature. By using the upper and
lower bounds of importance, we can omit unneces-
sary calculations and focus on computing the features
with non-zero importance, thus accelerating CUR
matrix decomposition.

3. Termination of computations that cannot
yield solutions

Next, I introduce a method to accelerate processes
by terminating computations that cannot yield solu-
tions. This method maintains patterns that failed dur-
ing the search process, terminating the process early
when these patterns reappear. An example of this
pruning method is the acceleration of subgraph
search.

Subgraph search is a process of finding subgraphs
with the same structure as the query graph within a
large data graph in which the nodes are labeled. In

Fig. 3(a), the query graph consists of two triangles
with labels A, B, C, and C, D, A; the corresponding
red subgraph in the data graph also consists of trian-
gles with the same labels. An application of subgraph
search is the search for organic compounds. The bond
relationships between molecules of organic com-
pounds can be represented as graphs, and compounds
with common bond relationships are known to have
similar properties. Using subgraph search to find
organic compounds with the same bond relationships,
compounds with properties similar to the query can
be discovered. However, subgraph search requires
mapping each node of the query graph to the data
graph, leading to exponential time complexity con-
cerning the size of the graph. Therefore, subgraph
search incurs excessive processing time as the data
graph becomes large.

We proposed a method to maintain the patterns of
failed mappings and terminate the process early if
these patterns reappear during the search process [2].
In Fig. 3(b) (upper), mapping node u0 with label A to

Fig. 3. Efficient subgraph search.

v0

v2

Search failure
(duplicated v0)

�
�

Resister the pattern

Match the
pattern

Terminate the
search

v0

Query graph Data graph

(a) Subgraph search

(b) Computational pruning

u0

v7u2

u0 u1

u2

u3 u4

u0 u1

u2

u3 u4

AD

BA

C

u0 u1

u2

u3 u4

CC C

B B

AD D D

A

B

C

v0 v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

v6

v6

v7

v7

v8

v8

v9

v9

v10

v10

v13

v13

v11

v11

v12

v12

D

A

AD

BA

C

B

CC C

B

ADD D D

A

C

B

A v0 v1

v4

v8v7

v11 v12v13v10v9

v5 v6

v3

AD

BA

C

B

CC C

B

AD D DD

AA

B

C

Feature Articles

39NTT Technical Review Vol. 22 No. 11 Nov. 2024

v0, u1 with label B to v2, u2 with label C to v7, and u3
with label D to v10 causes node u4 with label A to be
forced to map to v0, leading to a failure. Investigating
this failure reveals that mapping u0 to v0 and u2 to v7
causes the issue. Specifically, if we map u2 of label C
to v7, the connected node of label D of which is only
v10, we must map u3 to v10, and since only v0 is the
node of label A connecting to v7 and v10, we fail to
find a subgraph if we already have mapped u0 to v0.
Hence, the pattern of mapping u0 to v0 and u2 to v7 is
stored as a termination condition. If this pattern reap-
pears during the search, the process is terminated
early. In Fig. 3(b) (lower), mapping u0 to v0, u1 to v3,
and u2 to v7 matches the stored termination condition,
so the process is terminated without further explora-
tion. Thus, terminating computations that cannot
yield solutions prunes unnecessary processes,
enabling faster subgraph search.

4. Fast computations through
optimistic processing

Finally, I introduce a method that prunes computa-
tions through optimistic processing. This method

temporarily removes a constraint to find a solution
quickly then verifies if the obtained solution meets
the constraint, which enhances speed. An example of
this pruning method is the fast computation of
b-Matching graphs.

A b-Matching graph is a neighborhood graph in
which each data point is connected to a specified
number of neighbor data points. While k-nearest
neighbor graphs are often used, where each data point
is connected to k neighbor data points, they can result
in data points having more than k connections. In
Fig. 4(a) (left), each data point is connected to two
neighbors in a k-nearest neighbor graph, but data
points x2, x3, and x4 end up with more than two con-
nections. In the b-Matching graph (Fig. 4(a), right),
however, each data point has exactly two connec-
tions, capturing the cluster structure more effectively
where no data point has excessive connections. Addi-
tionally, edge weights in a b-Matching graph are
determined by data similarity. Specifically, in
Fig. 4(b), edges between similar data points that are
close together have larger weights, while edges
between dissimilar data points that are far apart have
smaller weights. This makes b-Matching graphs

Fig. 4. Efficient b-Matching graph.

b-Matching graph

Connected to
only two nodes

Find two clusters

k-NN graph

(i) Minimize the regression error

(c) Edge weight computation

Dissimilar nodes have
low edge weight

minimize: ||xi − �j W [i, j]xj||
2

subject to: �j W [i, j] = 1, W [i, j] ��0

Connected to more
than two nodes

Similar nodes have
high edge weight

(b) Edge weights in b-Matching graph

(a) Structure of b-Matching graph

(iii) Edge weights are non-negative(ii) Sum of edge weights is 1

x0

x1

x2

x3

x4 x5
x1

x0

x2

x3

x4 x5

Feature Articles

NTT Technical Review 40Vol. 22 No. 11 Nov. 2024

effective for capturing cluster structures, as similar
data points within the same cluster are more likely to
be connected. This property can be applied to tasks
such as parking lot status estimation and credit card
fraud detection by effectively estimating data labels
from neighboring data points.

To compute a b-Matching graph, it needs to (1) find
the specified number of neighbor data points for each
data point and (2) compute the edge weights. The
details of the finding neighbors are omitted here. For
the edge weight computation, solving the optimiza-
tion problem shown in Fig. 4(c) is required. In Fig.
4(c), xi represents the i-th data point, and W[i, j] rep-
resents the edge weight between the i-th and j-th data
points. This optimization problem aims to minimize
regression error, as shown in Fig. 4(c), while satisfy-
ing the constraints that the sum of edge weights
equals one and edge weights are non-negative. Solv-
ing such constrained regression typically requires
using an optimization solver, which incurs high com-
putation costs, thus lengthening the time required to
compute edge weights in b-Matching graphs.

We proposed a method for quickly computing edge
weights in b-Matching graphs through optimistic
processing, enabling faster b-Matching graph compu-
tations [3]. The method first minimizes the regression
error to compute the edge weight by ensuring that the
sum of the edge weights is 1 through regression
analysis instead of an optimization solver. It then
checks if the edge weights satisfy the constraint that
the edge weights be non-negative. Since this method
uses the solver only when the edge weights do not
meet the temporarily removed constraint, we can
reduce the number of times the solver is needed.
Thus, optimistic processing enables rapid computa-
tions while maintaining the rigor of results by ini-
tially removing a constraint, quickly finding a solu-
tion, then ensuring the constraints are met.

5. Conclusion and future prospects

With the remarkable progress in database and Inter-
net technologies, we can now collect and analyze
digital data on an unprecedented scale. Thus, data are
becoming an increasingly valuable resource and used
across various fields to discover new insights and
support decision-making. Our society is shifting
toward leveraging this new resource, and this trend is
expected to accelerate.

In response to this societal trend, our research team
is working to develop a machine learning platform
that provides fast and accurate data analysis. Specifi-
cally, we are focused on developing algorithms that
can process vast amounts of data efficiently and accu-
rately, as well as constructing efficient data manage-
ment systems. Through these efforts, we aim to create
an environment where more people can effectively
leverage data.

In the future, we hope that our machine learning
platform will be widely adopted as a fundamental
part of social infrastructure and that innovative appli-
cations leveraging data analysis will emerge across
various fields. To achieve this vision, we will con-
tinue to pursue cutting-edge technologies and maxi-
mize the potential of data analysis.

References

[1] Y. Ida, S. Kanai, Y. Fujiwara, T. Iwata, K. Takeuchi, and H. Kashima,
“Fast Deterministic CUR Matrix Decomposition with Accuracy
Assurance,” Proc. of the 37th International Conference on Machine
Learning (ICML 2020), pp. 4594–4603, Virtual event, July 2020.

[2] J. Arai, Y. Fujiwara, and M. Onizuka, “GuP: Fast Subgraph Matching
by Guard-based Pruning,” Proc. ACM Manag. Data, Vol. 1, No. 2,
Article no. 167, 2023. https://doi.org/10.1145/3589312

[3] Y. Fujiwara, A. Kumagai, S. Kanai, Y. Ida, and N. Ueda, “Efficient
Algorithm for the b-Matching Graph,” Proc. of the 26th ACM SIG-
KDD International Conference on Knowledge Discovery & Data
Mining (KDD 2020), pp. 187–197, Virtual event, July 2020. https://
doi.org/10.1145/3394486.3403061

Yasuhiro Fujiwara
Distinguished Researcher, Recognition

Research Group, Media Information Laboratory,
NTT Communication Science Laboratories.

He received a B.E. and M.E. from Waseda
University, Tokyo, in 2001 and 2003, and Ph.D.
from the University of Tokyo in 2012. He joined
NTT Cyber Solutions Laboratories in 2003 and is
currently a researcher at NTT Communication
Science Laboratories. His research interests
include databases, data mining, artificial intelli-
gence, and machine learning.

https://doi.org/10.1145/3589312
https://doi.org/10.1145/3394486.3403061
https://doi.org/10.1145/3394486.3403061

