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1.   Data analysis for large-scale data

Interest in data science has surged. One sign of this 
trend is the Harvard Business Review’s 2012 intro-
duction of data scientists as “the sexiest job of the 
21st century.” Many companies actively use data sci-
ence, and numerous universities are now dedicated to 
cultivating talent to support this field. This trend has 
intensified annually, highlighting the growing impor-
tance of data science. One reason for the heightened 
interest is that companies can enhance business value 
by deriving effective marketing strategies from data 
analysis. The Economist’s article, emphasizing data’s 
value with the phrase “data is the new oil,” also con-
tributed to the widespread recognition of data analy-
sis’s importance.

The volume of digital data, which is the subject of 
data analysis, has been increasing rapidly. According 
to market research reports, the amount of digital data, 
which was approximately 12.5 zettabytes (around 
1.25 billion terabytes) in 2014, is predicted to reach 
about 181 zettabytes (around 18.1 billion terabytes) 
by 2025. Extracting patterns and trends from such a 
vast data pool to support human decision-making is 

essential for effectively using this new resource 
called data. However, a significant challenge is that 
data analysis on such a massive scale incurs enor-
mous computational costs due to the complexity of 
data analysis.

Approximate computation is seen as a reasonable 
way of reducing such computational costs. However, 
approximate computations emphasize speed over 
precision, resulting in a trade-off between computa-
tion time and analysis accuracy. Therefore, reducing 
computation time lowers analysis accuracy, and 
improving accuracy increases computation time. 
Since data analysis is used to support human deci-
sion-making, degrading the rigor of analysis results is 
not desirable.

My research colleagues and I are advancing 
research and development activities to build a 
machine learning platform that achieves both speed 
and rigor in data analysis (Fig. 1). A key to this plat-
form is computational pruning. Computational prun-
ing accelerates processes by eliminating unnecessary 
computations without compromising the accuracy of 
the results. This article introduces three representa-
tive pruning methods: (1) omission of computations 
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using upper and lower bounds, (2) termination of 
computations that cannot yield solutions, and (3) fast 
computations through optimistic processing.

2.   Omission of computations using upper and 
lower bounds

First, I introduce a pruning method that uses upper 
and lower bounds to omit computations. This method 
rapidly identifies unnecessary processes by using 
upper and lower bounds of scores to skip unnecessary 
computations. An example of this pruning method is 

the acceleration of CUR matrix decomposition.
CUR matrix decomposition decomposes a given 

matrix X using its subsets of rows and columns 
(Fig. 2(a)). In Fig. 2(a), matrix X has the size of 7 × 
4, and in CUR matrix decomposition, this matrix is 
represented using two blue subsets of columns and 
three orange subsets of rows. CUR matrix decompo-
sition can extract important features from high-
dimensional data by finding characteristic subsets of 
rows and columns that well represent the given 
matrix. For instance, time-series data generated over 
long periods from high-functioning sensors in a  

Fig. 1.   Machine learning platform.
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factory can be represented as a matrix of sensor count 
× time length, resulting in a very large number of 
rows and columns. By applying CUR matrix decom-
position, we can identify the significant rows and 
columns that represent the matrix well, allowing us to 
pinpoint characteristic sensors and time periods from 
massive data, which yields effective factor analysis 
for enhancing factory productivity.

In CUR matrix decomposition, a parameter matrix 
corresponding to each feature in matrix X is intro-
duced to calculate the importance of each feature. 
Important features are extracted by setting features 
with negative importance to zero. In Fig. 2(b), the 
parameter matrix has four rows corresponding to 
each column’s features in matrix X in Fig. 2(a). In 
Fig. 2(b), the first and third rows of the parameter 
matrix are zero, indicating that the features of the first 
and third columns of matrix X in Fig. 2(a) are not 
important. In contrast, the features of the second and 
fourth columns are important. Although CUR matrix 
decomposition extracts important features from the 
parameter matrix, it requires iterative calculations, 
which are computationally expensive, making it dif-
ficult to apply it to large-scale data.

We proposed a method to rapidly execute CUR 
matrix decomposition by lightly calculating the upper 
and lower bounds of importance [1]. This method 
accelerates the iterative calculation of importance. As 
shown in Fig. 2(c), if the upper bound of importance 
is negative, the exact importance will also be nega-
tive, enabling us to skip the calculation of that fea-
ture. If the lower bound of importance is positive, the 
exact importance will also be positive, so we priori-
tize calculating that feature. By using the upper and 
lower bounds of importance, we can omit unneces-
sary calculations and focus on computing the features 
with non-zero importance, thus accelerating CUR 
matrix decomposition.

3.   Termination of computations that cannot 
yield solutions

Next, I introduce a method to accelerate processes 
by terminating computations that cannot yield solu-
tions. This method maintains patterns that failed dur-
ing the search process, terminating the process early 
when these patterns reappear. An example of this 
pruning method is the acceleration of subgraph 
search.

Subgraph search is a process of finding subgraphs 
with the same structure as the query graph within a 
large data graph in which the nodes are labeled. In 

Fig. 3(a), the query graph consists of two triangles 
with labels A, B, C, and C, D, A; the corresponding 
red subgraph in the data graph also consists of trian-
gles with the same labels. An application of subgraph 
search is the search for organic compounds. The bond 
relationships between molecules of organic com-
pounds can be represented as graphs, and compounds 
with common bond relationships are known to have 
similar properties. Using subgraph search to find 
organic compounds with the same bond relationships, 
compounds with properties similar to the query can 
be discovered. However, subgraph search requires 
mapping each node of the query graph to the data 
graph, leading to exponential time complexity con-
cerning the size of the graph. Therefore, subgraph 
search incurs excessive processing time as the data 
graph becomes large.

We proposed a method to maintain the patterns of 
failed mappings and terminate the process early if 
these patterns reappear during the search process [2]. 
In Fig. 3(b) (upper), mapping node u0 with label A to 

Fig. 3.   Efficient subgraph search.
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v0, u1 with label B to v2, u2 with label C to v7, and u3 
with label D to v10 causes node u4 with label A to be 
forced to map to v0, leading to a failure. Investigating 
this failure reveals that mapping u0 to v0 and u2 to v7 
causes the issue. Specifically, if we map u2 of label C 
to v7, the connected node of label D of which is only 
v10, we must map u3 to v10, and since only v0 is the 
node of label A connecting to v7 and v10, we fail to 
find a subgraph if we already have mapped u0 to v0. 
Hence, the pattern of mapping u0 to v0 and u2 to v7 is 
stored as a termination condition. If this pattern reap-
pears during the search, the process is terminated 
early. In Fig. 3(b) (lower), mapping u0 to v0, u1 to v3, 
and u2 to v7 matches the stored termination condition, 
so the process is terminated without further explora-
tion. Thus, terminating computations that cannot 
yield solutions prunes unnecessary processes, 
enabling faster subgraph search.

4.   Fast computations through 
optimistic processing

Finally, I introduce a method that prunes computa-
tions through optimistic processing. This method 

temporarily removes a constraint to find a solution 
quickly then verifies if the obtained solution meets 
the constraint, which enhances speed. An example of 
this pruning method is the fast computation of 
b-Matching graphs.

A b-Matching graph is a neighborhood graph in 
which each data point is connected to a specified 
number of neighbor data points. While k-nearest 
neighbor graphs are often used, where each data point 
is connected to k neighbor data points, they can result 
in data points having more than k connections. In 
Fig. 4(a) (left), each data point is connected to two 
neighbors in a k-nearest neighbor graph, but data 
points x2, x3, and x4 end up with more than two con-
nections. In the b-Matching graph (Fig. 4(a), right), 
however, each data point has exactly two connec-
tions, capturing the cluster structure more effectively 
where no data point has excessive connections. Addi-
tionally, edge weights in a b-Matching graph are 
determined by data similarity. Specifically, in 
Fig. 4(b), edges between similar data points that are 
close together have larger weights, while edges 
between dissimilar data points that are far apart have 
smaller weights. This makes b-Matching graphs 

Fig. 4.   Efficient b-Matching graph.
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effective for capturing cluster structures, as similar 
data points within the same cluster are more likely to 
be connected. This property can be applied to tasks 
such as parking lot status estimation and credit card 
fraud detection by effectively estimating data labels 
from neighboring data points.

To compute a b-Matching graph, it needs to (1) find 
the specified number of neighbor data points for each 
data point and (2) compute the edge weights. The 
details of the finding neighbors are omitted here. For 
the edge weight computation, solving the optimiza-
tion problem shown in Fig. 4(c) is required. In Fig. 
4(c), xi represents the i-th data point, and W[i, j] rep-
resents the edge weight between the i-th and j-th data 
points. This optimization problem aims to minimize 
regression error, as shown in Fig. 4(c), while satisfy-
ing the constraints that the sum of edge weights 
equals one and edge weights are non-negative. Solv-
ing such constrained regression typically requires 
using an optimization solver, which incurs high com-
putation costs, thus lengthening the time required to 
compute edge weights in b-Matching graphs.

We proposed a method for quickly computing edge 
weights in b-Matching graphs through optimistic 
processing, enabling faster b-Matching graph compu-
tations [3]. The method first minimizes the regression 
error to compute the edge weight by ensuring that the 
sum of the edge weights is 1 through regression 
analysis instead of an optimization solver. It then 
checks if the edge weights satisfy the constraint that 
the edge weights be non-negative. Since this method 
uses the solver only when the edge weights do not 
meet the temporarily removed constraint, we can 
reduce the number of times the solver is needed. 
Thus, optimistic processing enables rapid computa-
tions while maintaining the rigor of results by ini-
tially removing a constraint, quickly finding a solu-
tion, then ensuring the constraints are met.

5.   Conclusion and future prospects

With the remarkable progress in database and Inter-
net technologies, we can now collect and analyze 
digital data on an unprecedented scale. Thus, data are 
becoming an increasingly valuable resource and used 
across various fields to discover new insights and 
support decision-making. Our society is shifting 
toward leveraging this new resource, and this trend is 
expected to accelerate.

In response to this societal trend, our research team 
is working to develop a machine learning platform 
that provides fast and accurate data analysis. Specifi-
cally, we are focused on developing algorithms that 
can process vast amounts of data efficiently and accu-
rately, as well as constructing efficient data manage-
ment systems. Through these efforts, we aim to create 
an environment where more people can effectively 
leverage data.

In the future, we hope that our machine learning 
platform will be widely adopted as a fundamental 
part of social infrastructure and that innovative appli-
cations leveraging data analysis will emerge across 
various fields. To achieve this vision, we will con-
tinue to pursue cutting-edge technologies and maxi-
mize the potential of data analysis.
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